/* Compiler implementation of the D programming language * Copyright (C) 1999-2021 by The D Language Foundation, All Rights Reserved * written by Walter Bright * http://www.digitalmars.com * Distributed under the Boost Software License, Version 1.0. * http://www.boost.org/LICENSE_1_0.txt * https://github.com/D-Programming-Language/dmd/blob/master/src/declaration.c */ #include "root/dsystem.h" #include "root/checkedint.h" #include "errors.h" #include "init.h" #include "declaration.h" #include "attrib.h" #include "mtype.h" #include "template.h" #include "scope.h" #include "aggregate.h" #include "module.h" #include "import.h" #include "id.h" #include "expression.h" #include "statement.h" #include "ctfe.h" #include "target.h" #include "hdrgen.h" bool checkNestedRef(Dsymbol *s, Dsymbol *p); /************************************ * Check to see the aggregate type is nested and its context pointer is * accessible from the current scope. * Returns true if error occurs. */ bool checkFrameAccess(Loc loc, Scope *sc, AggregateDeclaration *ad, size_t iStart = 0) { Dsymbol *sparent = ad->toParent2(); Dsymbol *s = sc->func; if (ad->isNested() && s) { //printf("ad = %p %s [%s], parent:%p\n", ad, ad->toChars(), ad->loc.toChars(), ad->parent); //printf("sparent = %p %s [%s], parent: %s\n", sparent, sparent->toChars(), sparent->loc.toChars(), sparent->parent->toChars()); if (checkNestedRef(s, sparent)) { error(loc, "cannot access frame pointer of %s", ad->toPrettyChars()); return true; } } bool result = false; for (size_t i = iStart; i < ad->fields.length; i++) { VarDeclaration *vd = ad->fields[i]; Type *tb = vd->type->baseElemOf(); if (tb->ty == Tstruct) { result |= checkFrameAccess(loc, sc, ((TypeStruct *)tb)->sym); } } return result; } /********************************* Declaration ****************************/ Declaration::Declaration(Identifier *id) : Dsymbol(id) { type = NULL; originalType = NULL; storage_class = STCundefined; protection = Prot(Prot::undefined); linkage = LINKdefault; inuse = 0; mangleOverride = NULL; } const char *Declaration::kind() const { return "declaration"; } d_uns64 Declaration::size(Loc) { assert(type); return type->size(); } bool Declaration::isDelete() { return false; } bool Declaration::isDataseg() { return false; } bool Declaration::isThreadlocal() { return false; } bool Declaration::isCodeseg() const { return false; } Prot Declaration::prot() { return protection; } /************************************* * Check to see if declaration can be modified in this context (sc). * Issue error if not. */ int Declaration::checkModify(Loc loc, Scope *sc, Type *, Expression *e1, int flag) { VarDeclaration *v = isVarDeclaration(); if (v && v->canassign) return 2; if (isParameter() || isResult()) { for (Scope *scx = sc; scx; scx = scx->enclosing) { if (scx->func == parent && (scx->flags & SCOPEcontract)) { const char *s = isParameter() && parent->ident != Id::ensure ? "parameter" : "result"; if (!flag) error(loc, "cannot modify %s `%s` in contract", s, toChars()); return 2; // do not report type related errors } } } if (e1 && e1->op == TOKthis && isField()) { VarDeclaration *vthis = e1->isThisExp()->var; for (Scope *scx = sc; scx; scx = scx->enclosing) { if (scx->func == vthis->parent && (scx->flags & SCOPEcontract)) { if (!flag) error(loc, "cannot modify parameter `this` in contract"); return 2; // do not report type related errors } } } if (v && (isCtorinit() || isField())) { // It's only modifiable if inside the right constructor if ((storage_class & (STCforeach | STCref)) == (STCforeach | STCref)) return 2; return modifyFieldVar(loc, sc, v, e1) ? 2 : 1; } return 1; } /** * Issue an error if an attempt to call a disabled method is made * * If the declaration is disabled but inside a disabled function, * returns `true` but do not issue an error message. * * Params: * loc = Location information of the call * sc = Scope in which the call occurs * isAliasedDeclaration = if `true` searches overload set * * Returns: * `true` if this `Declaration` is `@disable`d, `false` otherwise. */ bool Declaration::checkDisabled(Loc loc, Scope *sc, bool isAliasedDeclaration) { if (!(storage_class & STCdisable)) return false; if (sc->func && (sc->func->storage_class & STCdisable)) return true; Dsymbol *p = toParent(); if (p && isPostBlitDeclaration()) { p->error(loc, "is not copyable because it is annotated with `@disable`"); return true; } // if the function is @disabled, maybe there // is an overload in the overload set that isn't if (isAliasedDeclaration) { FuncDeclaration *fd = isFuncDeclaration(); if (fd) { for (FuncDeclaration *ovl = fd; ovl; ovl = (FuncDeclaration *)ovl->overnext) if (!(ovl->storage_class & STCdisable)) return false; } } error(loc, "cannot be used because it is annotated with `@disable`"); return true; } Dsymbol *Declaration::search(const Loc &loc, Identifier *ident, int flags) { Dsymbol *s = Dsymbol::search(loc, ident, flags); if (!s && type) { s = type->toDsymbol(_scope); if (s) s = s->search(loc, ident, flags); } return s; } /********************************* TupleDeclaration ****************************/ TupleDeclaration::TupleDeclaration(Loc loc, Identifier *id, Objects *objects) : Declaration(id) { this->loc = loc; this->type = NULL; this->objects = objects; this->isexp = false; this->tupletype = NULL; } Dsymbol *TupleDeclaration::syntaxCopy(Dsymbol *) { assert(0); return NULL; } const char *TupleDeclaration::kind() const { return "tuple"; } Type *TupleDeclaration::getType() { /* If this tuple represents a type, return that type */ //printf("TupleDeclaration::getType() %s\n", toChars()); if (isexp) return NULL; if (!tupletype) { /* It's only a type tuple if all the Object's are types */ for (size_t i = 0; i < objects->length; i++) { RootObject *o = (*objects)[i]; if (o->dyncast() != DYNCAST_TYPE) { //printf("\tnot[%d], %p, %d\n", i, o, o->dyncast()); return NULL; } } /* We know it's a type tuple, so build the TypeTuple */ Types *types = (Types *)objects; Parameters *args = new Parameters(); args->setDim(objects->length); OutBuffer buf; int hasdeco = 1; for (size_t i = 0; i < types->length; i++) { Type *t = (*types)[i]; //printf("type = %s\n", t->toChars()); Parameter *arg = new Parameter(0, t, NULL, NULL, NULL); (*args)[i] = arg; if (!t->deco) hasdeco = 0; } tupletype = new TypeTuple(args); if (hasdeco) return typeSemantic(tupletype, Loc(), NULL); } return tupletype; } Dsymbol *TupleDeclaration::toAlias2() { //printf("TupleDeclaration::toAlias2() '%s' objects = %s\n", toChars(), objects->toChars()); for (size_t i = 0; i < objects->length; i++) { RootObject *o = (*objects)[i]; if (Dsymbol *s = isDsymbol(o)) { s = s->toAlias2(); (*objects)[i] = s; } } return this; } bool TupleDeclaration::needThis() { //printf("TupleDeclaration::needThis(%s)\n", toChars()); for (size_t i = 0; i < objects->length; i++) { RootObject *o = (*objects)[i]; if (o->dyncast() == DYNCAST_EXPRESSION) { Expression *e = (Expression *)o; if (e->op == TOKdsymbol) { DsymbolExp *ve = (DsymbolExp *)e; Declaration *d = ve->s->isDeclaration(); if (d && d->needThis()) { return true; } } } } return false; } /********************************* AliasDeclaration ****************************/ AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Type *type) : Declaration(id) { //printf("AliasDeclaration(id = '%s', type = %p)\n", id->toChars(), type); //printf("type = '%s'\n", type->toChars()); this->loc = loc; this->type = type; this->aliassym = NULL; this->_import = NULL; this->overnext = NULL; assert(type); } AliasDeclaration::AliasDeclaration(Loc loc, Identifier *id, Dsymbol *s) : Declaration(id) { //printf("AliasDeclaration(id = '%s', s = %p)\n", id->toChars(), s); assert(s != this); this->loc = loc; this->type = NULL; this->aliassym = s; this->_import = NULL; this->overnext = NULL; assert(s); } AliasDeclaration *AliasDeclaration::create(Loc loc, Identifier *id, Type *type) { return new AliasDeclaration(loc, id, type); } Dsymbol *AliasDeclaration::syntaxCopy(Dsymbol *s) { //printf("AliasDeclaration::syntaxCopy()\n"); assert(!s); AliasDeclaration *sa = type ? new AliasDeclaration(loc, ident, type->syntaxCopy()) : new AliasDeclaration(loc, ident, aliassym->syntaxCopy(NULL)); sa->storage_class = storage_class; return sa; } bool AliasDeclaration::overloadInsert(Dsymbol *s) { //printf("[%s] AliasDeclaration::overloadInsert('%s') s = %s %s @ [%s]\n", // loc.toChars(), toChars(), s->kind(), s->toChars(), s->loc.toChars()); /** Aliases aren't overloadable themselves, but if their Aliasee is * overloadable they are converted to an overloadable Alias (either * FuncAliasDeclaration or OverDeclaration). * * This is done by moving the Aliasee into such an overloadable alias * which is then used to replace the existing Aliasee. The original * Alias (_this_) remains a useless shell. * * This is a horrible mess. It was probably done to avoid replacing * existing AST nodes and references, but it needs a major * simplification b/c it's too complex to maintain. * * A simpler approach might be to merge any colliding symbols into a * simple Overload class (an array) and then later have that resolve * all collisions. */ if (semanticRun >= PASSsemanticdone) { /* Semantic analysis is already finished, and the aliased entity * is not overloadable. */ if (type) return false; /* When s is added in member scope by static if, mixin("code") or others, * aliassym is determined already. See the case in: test/compilable/test61.d */ Dsymbol *sa = aliassym->toAlias(); if (FuncDeclaration *fd = sa->isFuncDeclaration()) { FuncAliasDeclaration *fa = new FuncAliasDeclaration(ident, fd); fa->protection = protection; fa->parent = parent; aliassym = fa; return aliassym->overloadInsert(s); } if (TemplateDeclaration *td = sa->isTemplateDeclaration()) { OverDeclaration *od = new OverDeclaration(ident, td); od->protection = protection; od->parent = parent; aliassym = od; return aliassym->overloadInsert(s); } if (OverDeclaration *od = sa->isOverDeclaration()) { if (sa->ident != ident || sa->parent != parent) { od = new OverDeclaration(ident, od); od->protection = protection; od->parent = parent; aliassym = od; } return od->overloadInsert(s); } if (OverloadSet *os = sa->isOverloadSet()) { if (sa->ident != ident || sa->parent != parent) { os = new OverloadSet(ident, os); // TODO: protection is lost here b/c OverloadSets have no protection attribute // Might no be a practical issue, b/c the code below fails to resolve the overload anyhow. // ---- // module os1; // import a, b; // private alias merged = foo; // private alias to overload set of a.foo and b.foo // ---- // module os2; // import a, b; // public alias merged = bar; // public alias to overload set of a.bar and b.bar // ---- // module bug; // import os1, os2; // void test() { merged(123); } // should only look at os2.merged // // os.protection = protection; os->parent = parent; aliassym = os; } os->push(s); return true; } return false; } /* Don't know yet what the aliased symbol is, so assume it can * be overloaded and check later for correctness. */ if (overnext) return overnext->overloadInsert(s); if (s == this) return true; overnext = s; return true; } const char *AliasDeclaration::kind() const { return "alias"; } Type *AliasDeclaration::getType() { if (type) return type; return toAlias()->getType(); } Dsymbol *AliasDeclaration::toAlias() { //printf("[%s] AliasDeclaration::toAlias('%s', this = %p, aliassym = %p, kind = '%s', inuse = %d)\n", // loc.toChars(), toChars(), this, aliassym, aliassym ? aliassym->kind() : "", inuse); assert(this != aliassym); //static int count; if (++count == 10) *(char*)0=0; if (inuse == 1 && type && _scope) { inuse = 2; unsigned olderrors = global.errors; Dsymbol *s = type->toDsymbol(_scope); //printf("[%s] type = %s, s = %p, this = %p\n", loc.toChars(), type->toChars(), s, this); if (global.errors != olderrors) goto Lerr; if (s) { s = s->toAlias(); if (global.errors != olderrors) goto Lerr; aliassym = s; inuse = 0; } else { Type *t = typeSemantic(type, loc, _scope); if (t->ty == Terror) goto Lerr; if (global.errors != olderrors) goto Lerr; //printf("t = %s\n", t->toChars()); inuse = 0; } } if (inuse) { error("recursive alias declaration"); Lerr: // Avoid breaking "recursive alias" state during errors gagged if (global.gag) return this; aliassym = new AliasDeclaration(loc, ident, Type::terror); type = Type::terror; return aliassym; } if (semanticRun >= PASSsemanticdone) { // semantic is already done. // Do not see aliassym !is null, because of lambda aliases. // Do not see type.deco !is null, even so "alias T = const int;` needs // semantic analysis to take the storage class `const` as type qualifier. } else { if (_import && _import->_scope) { /* If this is an internal alias for selective/renamed import, * load the module first. */ dsymbolSemantic(_import, NULL); } if (_scope) { aliasSemantic(this, _scope); } } inuse = 1; Dsymbol *s = aliassym ? aliassym->toAlias() : this; inuse = 0; return s; } Dsymbol *AliasDeclaration::toAlias2() { if (inuse) { error("recursive alias declaration"); return this; } inuse = 1; Dsymbol *s = aliassym ? aliassym->toAlias2() : this; inuse = 0; return s; } bool AliasDeclaration::isOverloadable() { // assume overloadable until alias is resolved return semanticRun < PASSsemanticdone || (aliassym && aliassym->isOverloadable()); } /****************************** OverDeclaration **************************/ OverDeclaration::OverDeclaration(Identifier *ident, Dsymbol *s, bool hasOverloads) : Declaration(ident) { this->overnext = NULL; this->aliassym = s; this->hasOverloads = hasOverloads; if (hasOverloads) { if (OverDeclaration *od = aliassym->isOverDeclaration()) this->hasOverloads = od->hasOverloads; } else { // for internal use assert(!aliassym->isOverDeclaration()); } } const char *OverDeclaration::kind() const { return "overload alias"; // todo } bool OverDeclaration::equals(RootObject *o) { if (this == o) return true; Dsymbol *s = isDsymbol(o); if (!s) return false; OverDeclaration *od1 = this; if (OverDeclaration *od2 = s->isOverDeclaration()) { return od1->aliassym->equals(od2->aliassym) && od1->hasOverloads == od2->hasOverloads; } if (aliassym == s) { if (hasOverloads) return true; if (FuncDeclaration *fd = s->isFuncDeclaration()) { return fd->isUnique() != NULL; } if (TemplateDeclaration *td = s->isTemplateDeclaration()) { return td->overnext == NULL; } } return false; } bool OverDeclaration::overloadInsert(Dsymbol *s) { //printf("OverDeclaration::overloadInsert('%s') aliassym = %p, overnext = %p\n", s->toChars(), aliassym, overnext); if (overnext) return overnext->overloadInsert(s); if (s == this) return true; overnext = s; return true; } Dsymbol *OverDeclaration::toAlias() { return this; } bool OverDeclaration::isOverloadable() { return true; } Dsymbol *OverDeclaration::isUnique() { if (!hasOverloads) { if (aliassym->isFuncDeclaration() || aliassym->isTemplateDeclaration()) { return aliassym; } } struct ParamUniqueSym { static int fp(void *param, Dsymbol *s) { Dsymbol **ps = (Dsymbol **)param; if (*ps) { *ps = NULL; return 1; // ambiguous, done } else { *ps = s; return 0; } } }; Dsymbol *result = NULL; overloadApply(aliassym, &result, &ParamUniqueSym::fp); return result; } /********************************* VarDeclaration ****************************/ VarDeclaration::VarDeclaration(Loc loc, Type *type, Identifier *id, Initializer *init) : Declaration(id) { //printf("VarDeclaration('%s')\n", id->toChars()); assert(id); assert(type || init); this->type = type; this->_init = init; this->loc = loc; offset = 0; isargptr = false; alignment = 0; ctorinit = 0; aliassym = NULL; onstack = false; mynew = false; canassign = 0; overlapped = false; overlapUnsafe = false; doNotInferScope = false; isdataseg = 0; lastVar = NULL; endlinnum = 0; ctfeAdrOnStack = -1; edtor = NULL; range = NULL; static unsigned nextSequenceNumber = 0; this->sequenceNumber = ++nextSequenceNumber; } VarDeclaration *VarDeclaration::create(Loc loc, Type *type, Identifier *id, Initializer *init) { return new VarDeclaration(loc, type, id, init); } Dsymbol *VarDeclaration::syntaxCopy(Dsymbol *s) { //printf("VarDeclaration::syntaxCopy(%s)\n", toChars()); assert(!s); VarDeclaration *v = new VarDeclaration(loc, type ? type->syntaxCopy() : NULL, ident, _init ? _init->syntaxCopy() : NULL); v->storage_class = storage_class; return v; } void VarDeclaration::setFieldOffset(AggregateDeclaration *ad, unsigned *poffset, bool isunion) { //printf("VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars()); if (aliassym) { // If this variable was really a tuple, set the offsets for the tuple fields TupleDeclaration *v2 = aliassym->isTupleDeclaration(); assert(v2); for (size_t i = 0; i < v2->objects->length; i++) { RootObject *o = (*v2->objects)[i]; assert(o->dyncast() == DYNCAST_EXPRESSION); Expression *e = (Expression *)o; assert(e->op == TOKdsymbol); DsymbolExp *se = (DsymbolExp *)e; se->s->setFieldOffset(ad, poffset, isunion); } return; } if (!isField()) return; assert(!(storage_class & (STCstatic | STCextern | STCparameter | STCtls))); //printf("+VarDeclaration::setFieldOffset(ad = %s) %s\n", ad->toChars(), toChars()); /* Fields that are tuples appear both as part of TupleDeclarations and * as members. That means ignore them if they are already a field. */ if (offset) { // already a field *poffset = ad->structsize; // Bugzilla 13613 return; } for (size_t i = 0; i < ad->fields.length; i++) { if (ad->fields[i] == this) { // already a field *poffset = ad->structsize; // Bugzilla 13613 return; } } // Check for forward referenced types which will fail the size() call Type *t = type->toBasetype(); if (storage_class & STCref) { // References are the size of a pointer t = Type::tvoidptr; } Type *tv = t->baseElemOf(); if (tv->ty == Tstruct) { TypeStruct *ts = (TypeStruct *)tv; assert(ts->sym != ad); // already checked in ad->determineFields() if (!ts->sym->determineSize(loc)) { type = Type::terror; errors = true; return; } } // List in ad->fields. Even if the type is error, it's necessary to avoid // pointless error diagnostic "more initializers than fields" on struct literal. ad->fields.push(this); if (t->ty == Terror) return; const d_uns64 sz = t->size(loc); assert(sz != SIZE_INVALID && sz < UINT32_MAX); unsigned memsize = (unsigned)sz; // size of member unsigned memalignsize = target.fieldalign(t); // size of member for alignment purposes offset = AggregateDeclaration::placeField(poffset, memsize, memalignsize, alignment, &ad->structsize, &ad->alignsize, isunion); //printf("\t%s: memalignsize = %d\n", toChars(), memalignsize); //printf(" addField '%s' to '%s' at offset %d, size = %d\n", toChars(), ad->toChars(), offset, memsize); } const char *VarDeclaration::kind() const { return "variable"; } Dsymbol *VarDeclaration::toAlias() { //printf("VarDeclaration::toAlias('%s', this = %p, aliassym = %p)\n", toChars(), this, aliassym); if ((!type || !type->deco) && _scope) dsymbolSemantic(this, _scope); assert(this != aliassym); Dsymbol *s = aliassym ? aliassym->toAlias() : this; return s; } AggregateDeclaration *VarDeclaration::isThis() { AggregateDeclaration *ad = NULL; if (!(storage_class & (STCstatic | STCextern | STCmanifest | STCtemplateparameter | STCtls | STCgshared | STCctfe))) { for (Dsymbol *s = this; s; s = s->parent) { ad = s->isMember(); if (ad) break; if (!s->parent || !s->parent->isTemplateMixin()) break; } } return ad; } bool VarDeclaration::needThis() { //printf("VarDeclaration::needThis(%s, x%x)\n", toChars(), storage_class); return isField(); } bool VarDeclaration::isExport() const { return protection.kind == Prot::export_; } bool VarDeclaration::isImportedSymbol() const { if (protection.kind == Prot::export_ && !_init && (storage_class & STCstatic || parent->isModule())) return true; return false; } /******************************************* * Helper function for the expansion of manifest constant. */ Expression *VarDeclaration::expandInitializer(Loc loc) { assert((storage_class & STCmanifest) && _init); Expression *e = getConstInitializer(); if (!e) { ::error(loc, "cannot make expression out of initializer for %s", toChars()); return new ErrorExp(); } e = e->copy(); e->loc = loc; // for better error message return e; } void VarDeclaration::checkCtorConstInit() { #if 0 /* doesn't work if more than one static ctor */ if (ctorinit == 0 && isCtorinit() && !isField()) error("missing initializer in static constructor for const variable"); #endif } bool lambdaCheckForNestedRef(Expression *e, Scope *sc); /************************************ * Check to see if this variable is actually in an enclosing function * rather than the current one. * Returns true if error occurs. */ bool VarDeclaration::checkNestedReference(Scope *sc, Loc loc) { //printf("VarDeclaration::checkNestedReference() %s\n", toChars()); if (sc->intypeof == 1 || (sc->flags & SCOPEctfe)) return false; if (!parent || parent == sc->parent) return false; if (isDataseg() || (storage_class & STCmanifest)) return false; // The current function FuncDeclaration *fdthis = sc->parent->isFuncDeclaration(); if (!fdthis) return false; // out of function scope Dsymbol *p = toParent2(); // Function literals from fdthis to p must be delegates checkNestedRef(fdthis, p); // The function that this variable is in FuncDeclaration *fdv = p->isFuncDeclaration(); if (!fdv || fdv == fdthis) return false; // Add fdthis to nestedrefs[] if not already there if (!nestedrefs.contains(fdthis)) nestedrefs.push(fdthis); /* __require and __ensure will always get called directly, * so they never make outer functions closure. */ if (fdthis->ident == Id::require || fdthis->ident == Id::ensure) return false; //printf("\tfdv = %s\n", fdv->toChars()); //printf("\tfdthis = %s\n", fdthis->toChars()); if (loc.filename) { int lv = fdthis->getLevel(loc, sc, fdv); if (lv == -2) // error return true; } // Add this to fdv->closureVars[] if not already there if (!sc->intypeof && !(sc->flags & SCOPEcompile)) { if (!fdv->closureVars.contains(this)) fdv->closureVars.push(this); } //printf("fdthis is %s\n", fdthis->toChars()); //printf("var %s in function %s is nested ref\n", toChars(), fdv->toChars()); // __dollar creates problems because it isn't a real variable Bugzilla 3326 if (ident == Id::dollar) { ::error(loc, "cannnot use $ inside a function literal"); return true; } if (ident == Id::withSym) // Bugzilla 1759 { ExpInitializer *ez = _init->isExpInitializer(); assert(ez); Expression *e = ez->exp; if (e->op == TOKconstruct || e->op == TOKblit) e = ((AssignExp *)e)->e2; return lambdaCheckForNestedRef(e, sc); } return false; } /******************************************* * If variable has a constant expression initializer, get it. * Otherwise, return NULL. */ Expression *VarDeclaration::getConstInitializer(bool needFullType) { assert(type && _init); // Ungag errors when not speculative unsigned oldgag = global.gag; if (global.gag) { Dsymbol *sym = toParent()->isAggregateDeclaration(); if (sym && !sym->isSpeculative()) global.gag = 0; } if (_scope) { inuse++; _init = initializerSemantic(_init, _scope, type, INITinterpret); _scope = NULL; inuse--; } Expression *e = initializerToExpression(_init, needFullType ? type : NULL); global.gag = oldgag; return e; } /************************************* * Return true if we can take the address of this variable. */ bool VarDeclaration::canTakeAddressOf() { return !(storage_class & STCmanifest); } /******************************* * Does symbol go into data segment? * Includes extern variables. */ bool VarDeclaration::isDataseg() { if (isdataseg == 0) // the value is not cached { isdataseg = 2; // The Variables does not go into the datasegment if (!canTakeAddressOf()) { return false; } Dsymbol *parent = toParent(); if (!parent && !(storage_class & STCstatic)) { error("forward referenced"); type = Type::terror; } else if (storage_class & (STCstatic | STCextern | STCtls | STCgshared) || parent->isModule() || parent->isTemplateInstance() || parent->isNspace()) { assert(!isParameter() && !isResult()); isdataseg = 1; // It is in the DataSegment } } return (isdataseg == 1); } /************************************ * Does symbol go into thread local storage? */ bool VarDeclaration::isThreadlocal() { //printf("VarDeclaration::isThreadlocal(%p, '%s')\n", this, toChars()); /* Data defaults to being thread-local. It is not thread-local * if it is immutable, const or shared. */ bool i = isDataseg() && !(storage_class & (STCimmutable | STCconst | STCshared | STCgshared)); //printf("\treturn %d\n", i); return i; } /******************************************** * Can variable be read and written by CTFE? */ bool VarDeclaration::isCTFE() { return (storage_class & STCctfe) != 0; // || !isDataseg(); } bool VarDeclaration::isOverlappedWith(VarDeclaration *v) { const d_uns64 vsz = v->type->size(); const d_uns64 tsz = type->size(); assert(vsz != SIZE_INVALID && tsz != SIZE_INVALID); return offset < v->offset + vsz && v->offset < offset + tsz; } bool VarDeclaration::hasPointers() { //printf("VarDeclaration::hasPointers() %s, ty = %d\n", toChars(), type->ty); return (!isDataseg() && type->hasPointers()); } /****************************************** * Return true if variable needs to call the destructor. */ bool VarDeclaration::needsScopeDtor() { //printf("VarDeclaration::needsScopeDtor() %s\n", toChars()); return edtor && !(storage_class & STCnodtor); } /****************************************** * If a variable has a scope destructor call, return call for it. * Otherwise, return NULL. */ Expression *VarDeclaration::callScopeDtor(Scope *) { //printf("VarDeclaration::callScopeDtor() %s\n", toChars()); // Destruction of STCfield's is handled by buildDtor() if (storage_class & (STCnodtor | STCref | STCout | STCfield)) { return NULL; } Expression *e = NULL; // Destructors for structs and arrays of structs Type *tv = type->baseElemOf(); if (tv->ty == Tstruct) { StructDeclaration *sd = ((TypeStruct *)tv)->sym; if (!sd->dtor || sd->errors) return NULL; const d_uns64 sz = type->size(); assert(sz != SIZE_INVALID); if (!sz) return NULL; if (type->toBasetype()->ty == Tstruct) { // v.__xdtor() e = new VarExp(loc, this); /* This is a hack so we can call destructors on const/immutable objects. * Need to add things like "const ~this()" and "immutable ~this()" to * fix properly. */ e->type = e->type->mutableOf(); // Enable calling destructors on shared objects. // The destructor is always a single, non-overloaded function, // and must serve both shared and non-shared objects. e->type = e->type->unSharedOf(); e = new DotVarExp(loc, e, sd->dtor, false); e = new CallExp(loc, e); } else { // __ArrayDtor(v[0 .. n]) e = new VarExp(loc, this); const d_uns64 sdsz = sd->type->size(); assert(sdsz != SIZE_INVALID && sdsz != 0); const d_uns64 n = sz / sdsz; e = new SliceExp(loc, e, new IntegerExp(loc, 0, Type::tsize_t), new IntegerExp(loc, n, Type::tsize_t)); // Prevent redundant bounds check ((SliceExp *)e)->upperIsInBounds = true; ((SliceExp *)e)->lowerIsLessThanUpper = true; // This is a hack so we can call destructors on const/immutable objects. e->type = sd->type->arrayOf(); e = new CallExp(loc, new IdentifierExp(loc, Id::__ArrayDtor), e); } return e; } // Destructors for classes if (storage_class & (STCauto | STCscope) && !(storage_class & STCparameter)) { for (ClassDeclaration *cd = type->isClassHandle(); cd; cd = cd->baseClass) { /* We can do better if there's a way with onstack * classes to determine if there's no way the monitor * could be set. */ //if (cd->isInterfaceDeclaration()) //error("interface %s cannot be scope", cd->toChars()); // Destroying C++ scope classes crashes currently. Since C++ class dtors are not currently supported, simply do not run dtors for them. // See https://issues.dlang.org/show_bug.cgi?id=13182 if (cd->isCPPclass()) { break; } if (mynew || onstack) // if any destructors { // delete this; Expression *ec; ec = new VarExp(loc, this); e = new DeleteExp(loc, ec, true); e->type = Type::tvoid; break; } } } return e; } /********************************** * Determine if `this` has a lifetime that lasts past * the destruction of `v` * Params: * v = variable to test against * Returns: * true if it does */ bool VarDeclaration::enclosesLifetimeOf(VarDeclaration *v) const { return sequenceNumber < v->sequenceNumber; } /****************************************** */ void ObjectNotFound(Identifier *id) { Type::error(Loc(), "%s not found. object.d may be incorrectly installed or corrupt.", id->toChars()); fatal(); } /******************************** SymbolDeclaration ********************************/ SymbolDeclaration::SymbolDeclaration(Loc loc, StructDeclaration *dsym) : Declaration(dsym->ident) { this->loc = loc; this->dsym = dsym; storage_class |= STCconst; } /********************************* TypeInfoDeclaration ****************************/ TypeInfoDeclaration::TypeInfoDeclaration(Type *tinfo) : VarDeclaration(Loc(), Type::dtypeinfo->type, tinfo->getTypeInfoIdent(), NULL) { this->tinfo = tinfo; storage_class = STCstatic | STCgshared; protection = Prot(Prot::public_); linkage = LINKc; alignment = target.ptrsize; } TypeInfoDeclaration *TypeInfoDeclaration::create(Type *tinfo) { return new TypeInfoDeclaration(tinfo); } Dsymbol *TypeInfoDeclaration::syntaxCopy(Dsymbol *) { assert(0); // should never be produced by syntax return NULL; } const char *TypeInfoDeclaration::toChars() { //printf("TypeInfoDeclaration::toChars() tinfo = %s\n", tinfo->toChars()); OutBuffer buf; buf.writestring("typeid("); buf.writestring(tinfo->toChars()); buf.writeByte(')'); return buf.extractChars(); } /***************************** TypeInfoConstDeclaration **********************/ TypeInfoConstDeclaration::TypeInfoConstDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoconst) { ObjectNotFound(Id::TypeInfo_Const); } type = Type::typeinfoconst->type; } TypeInfoConstDeclaration *TypeInfoConstDeclaration::create(Type *tinfo) { return new TypeInfoConstDeclaration(tinfo); } /***************************** TypeInfoInvariantDeclaration **********************/ TypeInfoInvariantDeclaration::TypeInfoInvariantDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoinvariant) { ObjectNotFound(Id::TypeInfo_Invariant); } type = Type::typeinfoinvariant->type; } TypeInfoInvariantDeclaration *TypeInfoInvariantDeclaration::create(Type *tinfo) { return new TypeInfoInvariantDeclaration(tinfo); } /***************************** TypeInfoSharedDeclaration **********************/ TypeInfoSharedDeclaration::TypeInfoSharedDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoshared) { ObjectNotFound(Id::TypeInfo_Shared); } type = Type::typeinfoshared->type; } TypeInfoSharedDeclaration *TypeInfoSharedDeclaration::create(Type *tinfo) { return new TypeInfoSharedDeclaration(tinfo); } /***************************** TypeInfoWildDeclaration **********************/ TypeInfoWildDeclaration::TypeInfoWildDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfowild) { ObjectNotFound(Id::TypeInfo_Wild); } type = Type::typeinfowild->type; } TypeInfoWildDeclaration *TypeInfoWildDeclaration::create(Type *tinfo) { return new TypeInfoWildDeclaration(tinfo); } /***************************** TypeInfoStructDeclaration **********************/ TypeInfoStructDeclaration::TypeInfoStructDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfostruct) { ObjectNotFound(Id::TypeInfo_Struct); } type = Type::typeinfostruct->type; } TypeInfoStructDeclaration *TypeInfoStructDeclaration::create(Type *tinfo) { return new TypeInfoStructDeclaration(tinfo); } /***************************** TypeInfoClassDeclaration ***********************/ TypeInfoClassDeclaration::TypeInfoClassDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoclass) { ObjectNotFound(Id::TypeInfo_Class); } type = Type::typeinfoclass->type; } TypeInfoClassDeclaration *TypeInfoClassDeclaration::create(Type *tinfo) { return new TypeInfoClassDeclaration(tinfo); } /***************************** TypeInfoInterfaceDeclaration *******************/ TypeInfoInterfaceDeclaration::TypeInfoInterfaceDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfointerface) { ObjectNotFound(Id::TypeInfo_Interface); } type = Type::typeinfointerface->type; } TypeInfoInterfaceDeclaration *TypeInfoInterfaceDeclaration::create(Type *tinfo) { return new TypeInfoInterfaceDeclaration(tinfo); } /***************************** TypeInfoPointerDeclaration *********************/ TypeInfoPointerDeclaration::TypeInfoPointerDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfopointer) { ObjectNotFound(Id::TypeInfo_Pointer); } type = Type::typeinfopointer->type; } TypeInfoPointerDeclaration *TypeInfoPointerDeclaration::create(Type *tinfo) { return new TypeInfoPointerDeclaration(tinfo); } /***************************** TypeInfoArrayDeclaration ***********************/ TypeInfoArrayDeclaration::TypeInfoArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoarray) { ObjectNotFound(Id::TypeInfo_Array); } type = Type::typeinfoarray->type; } TypeInfoArrayDeclaration *TypeInfoArrayDeclaration::create(Type *tinfo) { return new TypeInfoArrayDeclaration(tinfo); } /***************************** TypeInfoStaticArrayDeclaration *****************/ TypeInfoStaticArrayDeclaration::TypeInfoStaticArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfostaticarray) { ObjectNotFound(Id::TypeInfo_StaticArray); } type = Type::typeinfostaticarray->type; } TypeInfoStaticArrayDeclaration *TypeInfoStaticArrayDeclaration::create(Type *tinfo) { return new TypeInfoStaticArrayDeclaration(tinfo); } /***************************** TypeInfoAssociativeArrayDeclaration ************/ TypeInfoAssociativeArrayDeclaration::TypeInfoAssociativeArrayDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoassociativearray) { ObjectNotFound(Id::TypeInfo_AssociativeArray); } type = Type::typeinfoassociativearray->type; } TypeInfoAssociativeArrayDeclaration *TypeInfoAssociativeArrayDeclaration::create(Type *tinfo) { return new TypeInfoAssociativeArrayDeclaration(tinfo); } /***************************** TypeInfoVectorDeclaration ***********************/ TypeInfoVectorDeclaration::TypeInfoVectorDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfovector) { ObjectNotFound(Id::TypeInfo_Vector); } type = Type::typeinfovector->type; } TypeInfoVectorDeclaration *TypeInfoVectorDeclaration::create(Type *tinfo) { return new TypeInfoVectorDeclaration(tinfo); } /***************************** TypeInfoEnumDeclaration ***********************/ TypeInfoEnumDeclaration::TypeInfoEnumDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfoenum) { ObjectNotFound(Id::TypeInfo_Enum); } type = Type::typeinfoenum->type; } TypeInfoEnumDeclaration *TypeInfoEnumDeclaration::create(Type *tinfo) { return new TypeInfoEnumDeclaration(tinfo); } /***************************** TypeInfoFunctionDeclaration ********************/ TypeInfoFunctionDeclaration::TypeInfoFunctionDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfofunction) { ObjectNotFound(Id::TypeInfo_Function); } type = Type::typeinfofunction->type; } TypeInfoFunctionDeclaration *TypeInfoFunctionDeclaration::create(Type *tinfo) { return new TypeInfoFunctionDeclaration(tinfo); } /***************************** TypeInfoDelegateDeclaration ********************/ TypeInfoDelegateDeclaration::TypeInfoDelegateDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfodelegate) { ObjectNotFound(Id::TypeInfo_Delegate); } type = Type::typeinfodelegate->type; } TypeInfoDelegateDeclaration *TypeInfoDelegateDeclaration::create(Type *tinfo) { return new TypeInfoDelegateDeclaration(tinfo); } /***************************** TypeInfoTupleDeclaration **********************/ TypeInfoTupleDeclaration::TypeInfoTupleDeclaration(Type *tinfo) : TypeInfoDeclaration(tinfo) { if (!Type::typeinfotypelist) { ObjectNotFound(Id::TypeInfo_Tuple); } type = Type::typeinfotypelist->type; } TypeInfoTupleDeclaration *TypeInfoTupleDeclaration::create(Type *tinfo) { return new TypeInfoTupleDeclaration(tinfo); } /********************************* ThisDeclaration ****************************/ // For the "this" parameter to member functions ThisDeclaration::ThisDeclaration(Loc loc, Type *t) : VarDeclaration(loc, t, Id::This, NULL) { storage_class |= STCnodtor; } Dsymbol *ThisDeclaration::syntaxCopy(Dsymbol *) { assert(0); // should never be produced by syntax return NULL; }