/* Compiler implementation of the D programming language * Copyright (C) 1999-2021 by The D Language Foundation, All Rights Reserved * written by Walter Bright * http://www.digitalmars.com * Distributed under the Boost Software License, Version 1.0. * http://www.boost.org/LICENSE_1_0.txt * https://github.com/D-Programming-Language/dmd/blob/master/src/func.c */ #include "root/dsystem.h" #include "mars.h" #include "init.h" #include "declaration.h" #include "attrib.h" #include "expression.h" #include "scope.h" #include "mtype.h" #include "aggregate.h" #include "identifier.h" #include "id.h" #include "module.h" #include "statement.h" #include "statement_rewrite_walker.h" #include "template.h" #include "hdrgen.h" #include "target.h" #include "parse.h" #include "root/rmem.h" #include "visitor.h" bool checkNestedRef(Dsymbol *s, Dsymbol *p); int blockExit(Statement *s, FuncDeclaration *func, bool mustNotThrow); TypeIdentifier *getThrowable(); bool MODimplicitConv(MOD modfrom, MOD modto); MATCH MODmethodConv(MOD modfrom, MOD modto); /*********************************************************** * Tuple of result identifier (possibly null) and statement. * This is used to store out contracts: out(id){ ensure } */ Ensure::Ensure() { this->id = NULL; this->ensure = NULL; } Ensure::Ensure(Identifier *id, Statement *ensure) { this->id = id; this->ensure = ensure; } Ensure Ensure::syntaxCopy() { return Ensure(id, ensure->syntaxCopy()); } /***************************************** * Do syntax copy of an array of Ensure's. */ Ensures *Ensure::arraySyntaxCopy(Ensures *a) { Ensures *b = NULL; if (a) { b = a->copy(); for (size_t i = 0; i < a->length; i++) (*b)[i] = (*a)[i].syntaxCopy(); } return b; } /********************************* FuncDeclaration ****************************/ FuncDeclaration::FuncDeclaration(Loc loc, Loc endloc, Identifier *id, StorageClass storage_class, Type *type) : Declaration(id) { //printf("FuncDeclaration(id = '%s', type = %p)\n", id->toChars(), type); //printf("storage_class = x%x\n", storage_class); this->storage_class = storage_class; this->type = type; if (type) { // Normalize storage_class, because function-type related attributes // are already set in the 'type' in parsing phase. this->storage_class &= ~(STC_TYPECTOR | STC_FUNCATTR); } this->loc = loc; this->endloc = endloc; fthrows = NULL; frequire = NULL; fdrequire = NULL; fdensure = NULL; mangleString = NULL; vresult = NULL; returnLabel = NULL; fensure = NULL; frequires = NULL; fensures = NULL; fbody = NULL; localsymtab = NULL; vthis = NULL; v_arguments = NULL; v_argptr = NULL; parameters = NULL; labtab = NULL; overnext = NULL; overnext0 = NULL; vtblIndex = -1; hasReturnExp = 0; naked = false; generated = false; inlineStatusExp = ILSuninitialized; inlineStatusStmt = ILSuninitialized; inlining = PINLINEdefault; inlineNest = 0; ctfeCode = NULL; isArrayOp = 0; semantic3Errors = false; fes = NULL; interfaceVirtual = NULL; introducing = 0; tintro = NULL; /* The type given for "infer the return type" is a TypeFunction with * NULL for the return type. */ inferRetType = (type && type->nextOf() == NULL); storage_class2 = 0; hasReturnExp = 0; nrvo_can = 1; nrvo_var = NULL; shidden = NULL; builtin = BUILTINunknown; tookAddressOf = 0; requiresClosure = false; inlinedNestedCallees = NULL; flags = 0; returns = NULL; gotos = NULL; selector = NULL; } FuncDeclaration *FuncDeclaration::create(Loc loc, Loc endloc, Identifier *id, StorageClass storage_class, Type *type) { return new FuncDeclaration(loc, endloc, id, storage_class, type); } Dsymbol *FuncDeclaration::syntaxCopy(Dsymbol *s) { //printf("FuncDeclaration::syntaxCopy('%s')\n", toChars()); FuncDeclaration *f = s ? (FuncDeclaration *)s : new FuncDeclaration(loc, endloc, ident, storage_class, type->syntaxCopy()); f->frequires = frequires ? Statement::arraySyntaxCopy(frequires) : NULL; f->fensures = fensures ? Ensure::arraySyntaxCopy(fensures) : NULL; f->fbody = fbody ? fbody->syntaxCopy() : NULL; assert(!fthrows); // deprecated return f; } // Returns true if a contract can appear without a function body. bool allowsContractWithoutBody(FuncDeclaration *funcdecl) { assert(!funcdecl->fbody); /* Contracts can only appear without a body when they are virtual * interface functions or abstract. */ Dsymbol *parent = funcdecl->toParent(); InterfaceDeclaration *id = parent->isInterfaceDeclaration(); if (!funcdecl->isAbstract() && (funcdecl->fensures || funcdecl->frequires) && !(id && funcdecl->isVirtual())) { ClassDeclaration *cd = parent->isClassDeclaration(); if (!(cd && cd->isAbstract())) return false; } return true; } /**************************************************** * Determine whether an 'out' contract is declared inside * the given function or any of its overrides. * Params: * fd = the function to search * Returns: * true found an 'out' contract * false didn't find one */ bool FuncDeclaration::needsFensure(FuncDeclaration *fd) { if (fd->fensures) return true; for (size_t i = 0; i < fd->foverrides.length; i++) { FuncDeclaration *fdv = fd->foverrides[i]; if (fdv->fensure) return true; if (needsFensure(fdv)) return true; } return false; } /**************************************************** * Check whether result variable can be built. * Returns: * `true` if the function has a return type that * is different from `void`. */ static bool canBuildResultVar(FuncDeclaration *fd) { TypeFunction *f = (TypeFunction *)fd->type; return f && f->nextOf() && f->nextOf()->toBasetype()->ty != Tvoid; } /**************************************************** * Rewrite contracts as statements. */ void FuncDeclaration::buildEnsureRequire() { if (frequires) { /* in { statements1... } * in { statements2... } * ... * becomes: * in { { statements1... } { statements2... } ... } */ assert(frequires->length); Loc loc = (*frequires)[0]->loc; Statements *s = new Statements; for (size_t i = 0; i < frequires->length; i++) { Statement *r = (*frequires)[i]; s->push(new ScopeStatement(r->loc, r, r->loc)); } frequire = new CompoundStatement(loc, s); } if (fensures) { /* out(id1) { statements1... } * out(id2) { statements2... } * ... * becomes: * out(__result) { { ref id1 = __result; { statements1... } } * { ref id2 = __result; { statements2... } } ... } */ assert(fensures->length); Loc loc = (*fensures)[0].ensure->loc; Statements *s = new Statements; for (size_t i = 0; i < fensures->length; i++) { Ensure r = (*fensures)[i]; if (r.id && canBuildResultVar(this)) { Loc rloc = r.ensure->loc; IdentifierExp *resultId = new IdentifierExp(rloc, Id::result); ExpInitializer *init = new ExpInitializer(rloc, resultId); StorageClass stc = STCref | STCtemp | STCresult; VarDeclaration *decl = new VarDeclaration(rloc, NULL, r.id, init); decl->storage_class = stc; ExpStatement *sdecl = new ExpStatement(rloc, decl); s->push(new ScopeStatement(rloc, new CompoundStatement(rloc, sdecl, r.ensure), rloc)); } else { s->push(r.ensure); } } fensure = new CompoundStatement(loc, s); } if (!isVirtual()) return; /* Rewrite contracts as nested functions, then call them. Doing it as nested * functions means that overriding functions can call them. */ TypeFunction *f = (TypeFunction *)type; if (frequire) { /* in { ... } * becomes: * void __require() { ... } * __require(); */ Loc loc = frequire->loc; TypeFunction *tf = new TypeFunction(ParameterList(), Type::tvoid, LINKd); tf->isnothrow = f->isnothrow; tf->isnogc = f->isnogc; tf->purity = f->purity; tf->trust = f->trust; FuncDeclaration *fd = new FuncDeclaration(loc, loc, Id::require, STCundefined, tf); fd->fbody = frequire; Statement *s1 = new ExpStatement(loc, fd); Expression *e = new CallExp(loc, new VarExp(loc, fd, false), (Expressions *)NULL); Statement *s2 = new ExpStatement(loc, e); frequire = new CompoundStatement(loc, s1, s2); fdrequire = fd; } if (fensure) { /* out (result) { ... } * becomes: * void __ensure(ref tret result) { ... } * __ensure(result); */ Loc loc = fensure->loc; Parameters *fparams = new Parameters(); Parameter *p = NULL; if (canBuildResultVar(this)) { p = new Parameter(STCref | STCconst, f->nextOf(), Id::result, NULL, NULL); fparams->push(p); } TypeFunction *tf = new TypeFunction(ParameterList(fparams), Type::tvoid, LINKd); tf->isnothrow = f->isnothrow; tf->isnogc = f->isnogc; tf->purity = f->purity; tf->trust = f->trust; FuncDeclaration *fd = new FuncDeclaration(loc, loc, Id::ensure, STCundefined, tf); fd->fbody = fensure; Statement *s1 = new ExpStatement(loc, fd); Expression *eresult = NULL; if (canBuildResultVar(this)) eresult = new IdentifierExp(loc, Id::result); Expression *e = new CallExp(loc, new VarExp(loc, fd, false), eresult); Statement *s2 = new ExpStatement(loc, e); fensure = new CompoundStatement(loc, s1, s2); fdensure = fd; } } /**************************************************** * Resolve forward reference of function signature - * parameter types, return type, and attributes. * Returns false if any errors exist in the signature. */ bool FuncDeclaration::functionSemantic() { if (!_scope) return !errors; if (!originalType) // semantic not yet run { TemplateInstance *spec = isSpeculative(); unsigned olderrs = global.errors; unsigned oldgag = global.gag; if (global.gag && !spec) global.gag = 0; dsymbolSemantic(this, _scope); global.gag = oldgag; if (spec && global.errors != olderrs) spec->errors = (global.errors - olderrs != 0); if (olderrs != global.errors) // if errors compiling this function return false; } // if inferring return type, sematic3 needs to be run // - When the function body contains any errors, we cannot assume // the inferred return type is valid. // So, the body errors should become the function signature error. if (inferRetType && type && !type->nextOf()) return functionSemantic3(); TemplateInstance *ti; if (isInstantiated() && !isVirtualMethod() && ((ti = parent->isTemplateInstance()) == NULL || ti->isTemplateMixin() || ti->tempdecl->ident == ident)) { AggregateDeclaration *ad = isMember2(); if (ad && ad->sizeok != SIZEOKdone) { /* Currently dmd cannot resolve forward references per methods, * then setting SIZOKfwd is too conservative and would break existing code. * So, just stop method attributes inference until ad->semantic() done. */ //ad->sizeok = SIZEOKfwd; } else return functionSemantic3() || !errors; } if (storage_class & STCinference) return functionSemantic3() || !errors; return !errors; } /**************************************************** * Resolve forward reference of function body. * Returns false if any errors exist in the body. */ bool FuncDeclaration::functionSemantic3() { if (semanticRun < PASSsemantic3 && _scope) { /* Forward reference - we need to run semantic3 on this function. * If errors are gagged, and it's not part of a template instance, * we need to temporarily ungag errors. */ TemplateInstance *spec = isSpeculative(); unsigned olderrs = global.errors; unsigned oldgag = global.gag; if (global.gag && !spec) global.gag = 0; semantic3(this, _scope); global.gag = oldgag; // If it is a speculatively-instantiated template, and errors occur, // we need to mark the template as having errors. if (spec && global.errors != olderrs) spec->errors = (global.errors - olderrs != 0); if (olderrs != global.errors) // if errors compiling this function return false; } return !errors && !semantic3Errors; } /**************************************************** * Check that this function type is properly resolved. * If not, report "forward reference error" and return true. */ bool FuncDeclaration::checkForwardRef(Loc loc) { if (!functionSemantic()) return true; /* No deco means the functionSemantic() call could not resolve * forward referenes in the type of this function. */ if (!type->deco) { bool inSemantic3 = (inferRetType && semanticRun >= PASSsemantic3); ::error(loc, "forward reference to %s`%s`", (inSemantic3 ? "inferred return type of function " : ""), toChars()); return true; } return false; } VarDeclaration *FuncDeclaration::declareThis(Scope *sc, AggregateDeclaration *ad) { if (ad) { VarDeclaration *v; { //printf("declareThis() %s\n", toChars()); Type *thandle = ad->handleType(); assert(thandle); thandle = thandle->addMod(type->mod); thandle = thandle->addStorageClass(storage_class); v = new ThisDeclaration(loc, thandle); v->storage_class |= STCparameter; if (thandle->ty == Tstruct) { v->storage_class |= STCref; // if member function is marked 'inout', then 'this' is 'return ref' if (type->ty == Tfunction && ((TypeFunction *)type)->iswild & 2) v->storage_class |= STCreturn; } if (type->ty == Tfunction) { TypeFunction *tf = (TypeFunction *)type; if (tf->isreturn) v->storage_class |= STCreturn; if (tf->isscope) v->storage_class |= STCscope; } if (flags & FUNCFLAGinferScope && !(v->storage_class & STCscope)) v->storage_class |= STCmaybescope; dsymbolSemantic(v, sc); if (!sc->insert(v)) assert(0); v->parent = this; return v; } } else if (isNested()) { /* The 'this' for a nested function is the link to the * enclosing function's stack frame. * Note that nested functions and member functions are disjoint. */ VarDeclaration *v = new ThisDeclaration(loc, Type::tvoid->pointerTo()); v->storage_class |= STCparameter; if (type->ty == Tfunction) { TypeFunction *tf = (TypeFunction *)type; if (tf->isreturn) v->storage_class |= STCreturn; if (tf->isscope) v->storage_class |= STCscope; } if (flags & FUNCFLAGinferScope && !(v->storage_class & STCscope)) v->storage_class |= STCmaybescope; dsymbolSemantic(v, sc); if (!sc->insert(v)) assert(0); v->parent = this; return v; } return NULL; } bool FuncDeclaration::equals(RootObject *o) { if (this == o) return true; Dsymbol *s = isDsymbol(o); if (s) { FuncDeclaration *fd1 = this; FuncDeclaration *fd2 = s->isFuncDeclaration(); if (!fd2) return false; FuncAliasDeclaration *fa1 = fd1->isFuncAliasDeclaration(); FuncAliasDeclaration *fa2 = fd2->isFuncAliasDeclaration(); if (fa1 && fa2) { return fa1->toAliasFunc()->equals(fa2->toAliasFunc()) && fa1->hasOverloads == fa2->hasOverloads; } if (fa1 && (fd1 = fa1->toAliasFunc())->isUnique() && !fa1->hasOverloads) fa1 = NULL; if (fa2 && (fd2 = fa2->toAliasFunc())->isUnique() && !fa2->hasOverloads) fa2 = NULL; if ((fa1 != NULL) != (fa2 != NULL)) return false; return fd1->toParent()->equals(fd2->toParent()) && fd1->ident->equals(fd2->ident) && fd1->type->equals(fd2->type); } return false; } /**************************************************** * Declare result variable lazily. */ void FuncDeclaration::buildResultVar(Scope *sc, Type *tret) { if (!vresult) { Loc loc = fensure ? fensure->loc : this->loc; /* If inferRetType is true, tret may not be a correct return type yet. * So, in here it may be a temporary type for vresult, and after * fbody->semantic() running, vresult->type might be modified. */ vresult = new VarDeclaration(loc, tret, Id::result, NULL); vresult->storage_class |= STCnodtor | STCtemp; if (!isVirtual()) vresult->storage_class |= STCconst; vresult->storage_class |= STCresult; // set before the semantic() for checkNestedReference() vresult->parent = this; } if (sc && vresult->semanticRun == PASSinit) { TypeFunction *tf = type->toTypeFunction(); if (tf->isref) vresult->storage_class |= STCref; vresult->type = tret; dsymbolSemantic(vresult, sc); if (!sc->insert(vresult)) error("out result %s is already defined", vresult->toChars()); assert(vresult->parent == this); } } /**************************************************** * Merge into this function the 'in' contracts of all it overrides. * 'in's are OR'd together, i.e. only one of them needs to pass. */ Statement *FuncDeclaration::mergeFrequire(Statement *sf) { /* If a base function and its override both have an IN contract, then * only one of them needs to succeed. This is done by generating: * * void derived.in() { * try { * base.in(); * } * catch () { * ... body of derived.in() ... * } * } * * So if base.in() doesn't throw, derived.in() need not be executed, and the contract is valid. * If base.in() throws, then derived.in()'s body is executed. */ /* Implementing this is done by having the overriding function call * nested functions (the fdrequire functions) nested inside the overridden * function. This requires that the stack layout of the calling function's * parameters and 'this' pointer be in the same place (as the nested * function refers to them). * This is easy for the parameters, as they are all on the stack in the same * place by definition, since it's an overriding function. The problem is * getting the 'this' pointer in the same place, since it is a local variable. * We did some hacks in the code generator to make this happen: * 1. always generate exception handler frame, or at least leave space for it * in the frame (Windows 32 SEH only) * 2. always generate an EBP style frame * 3. since 'this' is passed in a register that is subsequently copied into * a stack local, allocate that local immediately following the exception * handler block, so it is always at the same offset from EBP. */ for (size_t i = 0; i < foverrides.length; i++) { FuncDeclaration *fdv = foverrides[i]; /* The semantic pass on the contracts of the overridden functions must * be completed before code generation occurs. * https://issues.dlang.org/show_bug.cgi?id=3602 */ if (fdv->frequires && fdv->semanticRun != PASSsemantic3done) { assert(fdv->_scope); Scope *sc = fdv->_scope->push(); sc->stc &= ~STCoverride; semantic3(fdv, sc); sc->pop(); } sf = fdv->mergeFrequire(sf); if (sf && fdv->fdrequire) { //printf("fdv->frequire: %s\n", fdv->frequire->toChars()); /* Make the call: * try { __require(); } * catch (Throwable) { frequire; } */ Expression *eresult = NULL; Expression *e = new CallExp(loc, new VarExp(loc, fdv->fdrequire, false), eresult); Statement *s2 = new ExpStatement(loc, e); Catch *c = new Catch(loc, getThrowable(), NULL, sf); c->internalCatch = true; Catches *catches = new Catches(); catches->push(c); sf = new TryCatchStatement(loc, s2, catches); } else return NULL; } return sf; } /**************************************************** * Merge into this function the 'out' contracts of all it overrides. * 'out's are AND'd together, i.e. all of them need to pass. */ Statement *FuncDeclaration::mergeFensure(Statement *sf, Identifier *oid) { /* Same comments as for mergeFrequire(), except that we take care * of generating a consistent reference to the 'result' local by * explicitly passing 'result' to the nested function as a reference * argument. * This won't work for the 'this' parameter as it would require changing * the semantic code for the nested function so that it looks on the parameter * list for the 'this' pointer, something that would need an unknown amount * of tweaking of various parts of the compiler that I'd rather leave alone. */ for (size_t i = 0; i < foverrides.length; i++) { FuncDeclaration *fdv = foverrides[i]; /* The semantic pass on the contracts of the overridden functions must * be completed before code generation occurs. * https://issues.dlang.org/show_bug.cgi?id=3602 and * https://issues.dlang.org/show_bug.cgi?id=5230 */ if (needsFensure(fdv) && fdv->semanticRun != PASSsemantic3done) { assert(fdv->_scope); Scope *sc = fdv->_scope->push(); sc->stc &= ~STCoverride; semantic3(fdv, sc); sc->pop(); } sf = fdv->mergeFensure(sf, oid); if (fdv->fdensure) { //printf("fdv->fensure: %s\n", fdv->fensure->toChars()); // Make the call: __ensure(result) Expression *eresult = NULL; if (canBuildResultVar(this)) { eresult = new IdentifierExp(loc, oid); Type *t1 = fdv->type->nextOf()->toBasetype(); Type *t2 = this->type->nextOf()->toBasetype(); if (t1->isBaseOf(t2, NULL)) { /* Making temporary reference variable is necessary * in covariant return. * See bugzilla 5204 and 10479. */ ExpInitializer *ei = new ExpInitializer(Loc(), eresult); VarDeclaration *v = new VarDeclaration(Loc(), t1, Identifier::generateId("__covres"), ei); v->storage_class |= STCtemp; DeclarationExp *de = new DeclarationExp(Loc(), v); VarExp *ve = new VarExp(Loc(), v); eresult = new CommaExp(Loc(), de, ve); } } Expression *e = new CallExp(loc, new VarExp(loc, fdv->fdensure, false), eresult); Statement *s2 = new ExpStatement(loc, e); if (sf) { sf = new CompoundStatement(sf->loc, s2, sf); } else sf = s2; } } return sf; } /**************************************************** * Determine if 'this' overrides fd. * Return !=0 if it does. */ int FuncDeclaration::overrides(FuncDeclaration *fd) { int result = 0; if (fd->ident == ident) { int cov = type->covariant(fd->type); if (cov) { ClassDeclaration *cd1 = toParent()->isClassDeclaration(); ClassDeclaration *cd2 = fd->toParent()->isClassDeclaration(); if (cd1 && cd2 && cd2->isBaseOf(cd1, NULL)) result = 1; } } return result; } /************************************************* * Find index of function in vtbl[0..length] that * this function overrides. * Prefer an exact match to a covariant one. * Params: * fix17349 = enable fix https://issues.dlang.org/show_bug.cgi?id=17349 * Returns: * -1 didn't find one * -2 can't determine because of forward references */ int FuncDeclaration::findVtblIndex(Dsymbols *vtbl, int dim, bool fix17349) { //printf("findVtblIndex() %s\n", toChars()); FuncDeclaration *mismatch = NULL; StorageClass mismatchstc = 0; int mismatchvi = -1; int exactvi = -1; int bestvi = -1; for (int vi = 0; vi < dim; vi++) { FuncDeclaration *fdv = (*vtbl)[vi]->isFuncDeclaration(); if (fdv && fdv->ident == ident) { if (type->equals(fdv->type)) // if exact match { if (fdv->parent->isClassDeclaration()) { if (fdv->isFuture()) { bestvi = vi; continue; // keep looking } return vi; // no need to look further } if (exactvi >= 0) { error("cannot determine overridden function"); return exactvi; } exactvi = vi; bestvi = vi; continue; } StorageClass stc = 0; int cov = type->covariant(fdv->type, &stc, fix17349); //printf("\tbaseclass cov = %d\n", cov); switch (cov) { case 0: // types are distinct break; case 1: bestvi = vi; // covariant, but not identical break; // keep looking for an exact match case 2: mismatchvi = vi; mismatchstc = stc; mismatch = fdv; // overrides, but is not covariant break; // keep looking for an exact match case 3: return -2; // forward references default: assert(0); } } } if (bestvi == -1 && mismatch) { //type->print(); //mismatch->type->print(); //printf("%s %s\n", type->deco, mismatch->type->deco); //printf("stc = %llx\n", mismatchstc); if (mismatchstc) { // Fix it by modifying the type to add the storage classes type = type->addStorageClass(mismatchstc); bestvi = mismatchvi; } } return bestvi; } /********************************* * If function a function in a base class, * return that base class. * Params: * cd = class that function is in * Returns: * base class if overriding, NULL if not */ BaseClass *FuncDeclaration::overrideInterface() { ClassDeclaration *cd = parent->isClassDeclaration(); for (size_t i = 0; i < cd->interfaces.length; i++) { BaseClass *b = cd->interfaces.ptr[i]; int v = findVtblIndex((Dsymbols *)&b->sym->vtbl, (int)b->sym->vtbl.length); if (v >= 0) return b; } return NULL; } /**************************************************** * Overload this FuncDeclaration with the new one f. * Return true if successful; i.e. no conflict. */ bool FuncDeclaration::overloadInsert(Dsymbol *s) { //printf("FuncDeclaration::overloadInsert(s = %s) this = %s\n", s->toChars(), toChars()); assert(s != this); AliasDeclaration *ad = s->isAliasDeclaration(); if (ad) { if (overnext) return overnext->overloadInsert(ad); if (!ad->aliassym && ad->type->ty != Tident && ad->type->ty != Tinstance) { //printf("\tad = '%s'\n", ad->type->toChars()); return false; } overnext = ad; //printf("\ttrue: no conflict\n"); return true; } TemplateDeclaration *td = s->isTemplateDeclaration(); if (td) { if (!td->funcroot) td->funcroot = this; if (overnext) return overnext->overloadInsert(td); overnext = td; return true; } FuncDeclaration *fd = s->isFuncDeclaration(); if (!fd) return false; if (overnext) { td = overnext->isTemplateDeclaration(); if (td) fd->overloadInsert(td); else return overnext->overloadInsert(fd); } overnext = fd; //printf("\ttrue: no conflict\n"); return true; } /*************************************************** * Visit each overloaded function/template in turn, and call * (*fp)(param, s) on it. * Exit when no more, or (*fp)(param, f) returns nonzero. * Returns: * ==0 continue * !=0 done */ int overloadApply(Dsymbol *fstart, void *param, int (*fp)(void *, Dsymbol *)) { Dsymbol *d; Dsymbol *next; for (d = fstart; d; d = next) { if (OverDeclaration *od = d->isOverDeclaration()) { if (od->hasOverloads) { if (int r = overloadApply(od->aliassym, param, fp)) return r; } else { if (int r = (*fp)(param, od->aliassym)) return r; } next = od->overnext; } else if (FuncAliasDeclaration *fa = d->isFuncAliasDeclaration()) { if (fa->hasOverloads) { if (int r = overloadApply(fa->funcalias, param, fp)) return r; } else { FuncDeclaration *fd = fa->toAliasFunc(); if (!fd) { d->error("is aliased to a function"); break; } if (int r = (*fp)(param, fd)) return r; } next = fa->overnext; } else if (AliasDeclaration *ad = d->isAliasDeclaration()) { next = ad->toAlias(); if (next == ad) break; if (next == fstart) break; } else if (TemplateDeclaration *td = d->isTemplateDeclaration()) { if (int r = (*fp)(param, td)) return r; next = td->overnext; } else { FuncDeclaration *fd = d->isFuncDeclaration(); if (!fd) { d->error("is aliased to a function"); break; // BUG: should print error message? } if (int r = (*fp)(param, fd)) return r; next = fd->overnext; } } return 0; } /******************************************** * If there are no overloads of function f, return that function, * otherwise return NULL. */ FuncDeclaration *FuncDeclaration::isUnique() { struct ParamUnique { static int fp(void *param, Dsymbol *s) { FuncDeclaration *f = s->isFuncDeclaration(); if (!f) return 0; FuncDeclaration **pf = (FuncDeclaration **)param; if (*pf) { *pf = NULL; return 1; // ambiguous, done } else { *pf = f; return 0; } } }; FuncDeclaration *result = NULL; overloadApply(this, &result, &ParamUnique::fp); return result; } /******************************************** * Find function in overload list that exactly matches t. */ FuncDeclaration *FuncDeclaration::overloadExactMatch(Type *t) { struct ParamExact { Type *t; // type to match FuncDeclaration *f; // return value static int fp(void *param, Dsymbol *s) { FuncDeclaration *f = s->isFuncDeclaration(); if (!f) return 0; ParamExact *p = (ParamExact *)param; Type *t = p->t; if (t->equals(f->type)) { p->f = f; return 1; } /* Allow covariant matches, as long as the return type * is just a const conversion. * This allows things like pure functions to match with an impure function type. */ if (t->ty == Tfunction) { TypeFunction *tf = (TypeFunction *)f->type; if (tf->covariant(t) == 1 && tf->nextOf()->implicitConvTo(t->nextOf()) >= MATCHconst) { p->f = f; return 1; } } return 0; } }; ParamExact p; p.t = t; p.f = NULL; overloadApply(this, &p, &ParamExact::fp); return p.f; } void MODMatchToBuffer(OutBuffer *buf, unsigned char lhsMod, unsigned char rhsMod) { bool bothMutable = ((lhsMod & rhsMod) == 0); bool sharedMismatch = ((lhsMod ^ rhsMod) & MODshared) != 0; bool sharedMismatchOnly = ((lhsMod ^ rhsMod) == MODshared); if (lhsMod & MODshared) buf->writestring("shared "); else if (sharedMismatch && !(lhsMod & MODimmutable)) buf->writestring("non-shared "); if (bothMutable && sharedMismatchOnly) { } else if (lhsMod & MODimmutable) buf->writestring("immutable "); else if (lhsMod & MODconst) buf->writestring("const "); else if (lhsMod & MODwild) buf->writestring("inout "); else buf->writestring("mutable "); } /******************************************** * Find function in overload list that matches to the 'this' modifier. * There's four result types. * * 1. If the 'tthis' matches only one candidate, it's an "exact match". * Returns the function and 'hasOverloads' is set to false. * eg. If 'tthis" is mutable and there's only one mutable method. * 2. If there's two or more match candidates, but a candidate function will be * a "better match". * Returns the better match function but 'hasOverloads' is set to true. * eg. If 'tthis' is mutable, and there's both mutable and const methods, * the mutable method will be a better match. * 3. If there's two or more match candidates, but there's no better match, * Returns NULL and 'hasOverloads' is set to true to represent "ambiguous match". * eg. If 'tthis' is mutable, and there's two or more mutable methods. * 4. If there's no candidates, it's "no match" and returns NULL with error report. * e.g. If 'tthis' is const but there's no const methods. */ FuncDeclaration *FuncDeclaration::overloadModMatch(Loc loc, Type *tthis, bool &hasOverloads) { //printf("FuncDeclaration::overloadModMatch('%s')\n", toChars()); Match m; memset(&m, 0, sizeof(m)); m.last = MATCHnomatch; struct ParamMod { Match *m; Type *tthis; static int fp(void *param, Dsymbol *s) { if (FuncDeclaration *fd = s->isFuncDeclaration()) return ((ParamMod *)param)->fp(fd); return 0; } int fp(FuncDeclaration *f) { if (f == m->lastf) // skip duplicates return 0; m->anyf = f; TypeFunction *tf = f->type->toTypeFunction(); //printf("tf = %s\n", tf->toChars()); MATCH match; if (tthis) // non-static functions are preferred than static ones { if (f->needThis()) match = f->isCtorDeclaration() ? MATCHexact : MODmethodConv(tthis->mod, tf->mod); else match = MATCHconst; // keep static funciton in overload candidates } else // static functions are preferred than non-static ones { if (f->needThis()) match = MATCHconvert; else match = MATCHexact; } if (match != MATCHnomatch) { if (match > m->last) goto LfIsBetter; if (match < m->last) goto LlastIsBetter; /* See if one of the matches overrides the other. */ if (m->lastf->overrides(f)) goto LlastIsBetter; if (f->overrides(m->lastf)) goto LfIsBetter; //printf("\tambiguous\n"); m->nextf = f; m->count++; return 0; LlastIsBetter: //printf("\tlastbetter\n"); m->count++; // count up return 0; LfIsBetter: //printf("\tisbetter\n"); if (m->last <= MATCHconvert) { // clear last secondary matching m->nextf = NULL; m->count = 0; } m->last = match; m->lastf = f; m->count++; // count up return 0; } return 0; } }; ParamMod p; p.m = &m; p.tthis = tthis; overloadApply(this, &p, &ParamMod::fp); if (m.count == 1) // exact match { hasOverloads = false; } else if (m.count > 1) // better or ambiguous match { hasOverloads = true; } else // no match { hasOverloads = true; TypeFunction *tf = this->type->toTypeFunction(); assert(tthis); assert(!MODimplicitConv(tthis->mod, tf->mod)); // modifier mismatch { OutBuffer thisBuf, funcBuf; MODMatchToBuffer(&thisBuf, tthis->mod, tf->mod); MODMatchToBuffer(&funcBuf, tf->mod, tthis->mod); ::error(loc, "%smethod %s is not callable using a %sobject", funcBuf.peekChars(), this->toPrettyChars(), thisBuf.peekChars()); } } return m.lastf; } /******************************************** * Returns true if function was declared * directly or indirectly in a unittest block */ bool FuncDeclaration::inUnittest() { Dsymbol *f = this; do { if (f->isUnitTestDeclaration()) return true; f = f->toParent(); } while (f); return false; } /******************************************** * find function template root in overload list */ TemplateDeclaration *FuncDeclaration::findTemplateDeclRoot() { FuncDeclaration *f = this; while (f && f->overnext) { //printf("f->overnext = %p %s\n", f->overnext, f->overnext->toChars()); TemplateDeclaration *td = f->overnext->isTemplateDeclaration(); if (td) return td; f = f->overnext->isFuncDeclaration(); } return NULL; } /************************************* * Determine partial specialization order of 'this' vs g. * This is very similar to TemplateDeclaration::leastAsSpecialized(). * Returns: * match 'this' is at least as specialized as g * 0 g is more specialized than 'this' */ MATCH FuncDeclaration::leastAsSpecialized(FuncDeclaration *g) { /* This works by calling g() with f()'s parameters, and * if that is possible, then f() is at least as specialized * as g() is. */ TypeFunction *tf = type->toTypeFunction(); TypeFunction *tg = g->type->toTypeFunction(); size_t nfparams = tf->parameterList.length(); /* If both functions have a 'this' pointer, and the mods are not * the same and g's is not const, then this is less specialized. */ if (needThis() && g->needThis() && tf->mod != tg->mod) { if (isCtorDeclaration()) { if (!MODimplicitConv(tg->mod, tf->mod)) return MATCHnomatch; } else { if (!MODimplicitConv(tf->mod, tg->mod)) return MATCHnomatch; } } /* Create a dummy array of arguments out of the parameters to f() */ Expressions args; args.setDim(nfparams); for (size_t u = 0; u < nfparams; u++) { Parameter *p = tf->parameterList[u]; Expression *e; if (p->storageClass & (STCref | STCout)) { e = new IdentifierExp(Loc(), p->ident); e->type = p->type; } else e = p->type->defaultInitLiteral(Loc()); args[u] = e; } MATCH m = (MATCH) tg->callMatch(NULL, &args, 1); if (m > MATCHnomatch) { /* A variadic parameter list is less specialized than a * non-variadic one. */ if (tf->parameterList.varargs && !tg->parameterList.varargs) goto L1; // less specialized return m; } L1: return MATCHnomatch; } /// Walk through candidate template overloads and print them in the diagnostics. struct TemplateCandidateWalker { Loc loc; int numToDisplay; // max num of overloads to print (-v overrides this). /// Count template overloads. struct CountWalker { int numOverloads; static int fp(void *param, Dsymbol *) { CountWalker *p = (CountWalker *)param; ++(p->numOverloads); return 0; } }; static int fp(void *param, Dsymbol *s) { TemplateDeclaration *t = s->isTemplateDeclaration(); if (!t) return 0; TemplateCandidateWalker *p = (TemplateCandidateWalker *)param; ::errorSupplemental(t->loc, "%s", t->toPrettyChars()); if (!global.params.verbose && --(p->numToDisplay) == 0 && t->overnext) { // Too many overloads to sensibly display. // Just show count of remaining overloads. CountWalker cw; cw.numOverloads = 0; overloadApply(t->overnext, &cw, &CountWalker::fp); if (cw.numOverloads > 0) ::errorSupplemental(p->loc, "... (%d more, -v to show) ...", cw.numOverloads); return 1; // stop iterating } return 0; } }; /// Walk through candidate template overloads and print them in the diagnostics. struct FuncCandidateWalker { Loc loc; int numToDisplay; // max num of overloads to print (-v overrides this). /// Count function overloads. struct CountWalker { int numOverloads; static int fp(void *param, Dsymbol *) { CountWalker *p = (CountWalker *)param; ++(p->numOverloads); return 0; } }; static int fp(void *param, Dsymbol *s) { FuncDeclaration *fd = s->isFuncDeclaration(); TemplateDeclaration *td = s->isTemplateDeclaration(); if (fd) { if (fd->errors || fd->type->ty == Terror) return 0; TypeFunction *tf = (TypeFunction *)fd->type; ::errorSupplemental(fd->loc, "%s%s", fd->toPrettyChars(), parametersTypeToChars(tf->parameterList)); } else { ::errorSupplemental(td->loc, "%s", td->toPrettyChars()); } FuncCandidateWalker *p = (FuncCandidateWalker *)param; if (global.params.verbose || --(p->numToDisplay) != 0 || !fd) return 0; // Too many overloads to sensibly display. CountWalker cw; cw.numOverloads = 0; overloadApply(fd->overnext, &cw, &CountWalker::fp); if (cw.numOverloads > 0) ::errorSupplemental(p->loc, "... (%d more, -v to show) ...", cw.numOverloads); return 1; // stop iterating } }; /******************************************* * Given a symbol that could be either a FuncDeclaration or * a function template, resolve it to a function symbol. * loc instantiation location * sc instantiation scope * tiargs initial list of template arguments * tthis if !NULL, the 'this' pointer argument * fargs arguments to function * flags 1: do not issue error message on no match, just return NULL * 2: overloadResolve only */ FuncDeclaration *resolveFuncCall(Loc loc, Scope *sc, Dsymbol *s, Objects *tiargs, Type *tthis, Expressions *fargs, int flags) { if (!s) return NULL; // no match if ((tiargs && arrayObjectIsError(tiargs)) || (fargs && arrayObjectIsError((Objects *)fargs))) { return NULL; } Match m; memset(&m, 0, sizeof(m)); m.last = MATCHnomatch; const char *failMessage = NULL; functionResolve(&m, s, loc, sc, tiargs, tthis, fargs, &failMessage); if (m.last > MATCHnomatch && m.lastf) { if (m.count == 1) // exactly one match { if (!(flags & 1)) m.lastf->functionSemantic(); return m.lastf; } if ((flags & 2) && !tthis && m.lastf->needThis()) { return m.lastf; } } /* Failed to find a best match. * Do nothing or print error. */ if (m.last <= MATCHnomatch) { // error was caused on matched function if (m.count == 1) return m.lastf; // if do not print error messages if (flags & 1) return NULL; // no match } FuncDeclaration *fd = s->isFuncDeclaration(); OverDeclaration *od = s->isOverDeclaration(); TemplateDeclaration *td = s->isTemplateDeclaration(); if (td && td->funcroot) s = fd = td->funcroot; OutBuffer tiargsBuf; arrayObjectsToBuffer(&tiargsBuf, tiargs); OutBuffer fargsBuf; fargsBuf.writeByte('('); argExpTypesToCBuffer(&fargsBuf, fargs); fargsBuf.writeByte(')'); if (tthis) tthis->modToBuffer(&fargsBuf); const int numOverloadsDisplay = 5; // sensible number to display if (!m.lastf && !(flags & 1)) // no match { if (td && !fd) // all of overloads are templates { ::error(loc, "%s %s.%s cannot deduce function from argument types !(%s)%s, candidates are:", td->kind(), td->parent->toPrettyChars(), td->ident->toChars(), tiargsBuf.peekChars(), fargsBuf.peekChars()); // Display candidate templates (even if there are no multiple overloads) TemplateCandidateWalker tcw; tcw.loc = loc; tcw.numToDisplay = numOverloadsDisplay; overloadApply(td, &tcw, &TemplateCandidateWalker::fp); } else if (od) { ::error(loc, "none of the overloads of `%s` are callable using argument types !(%s)%s", od->ident->toChars(), tiargsBuf.peekChars(), fargsBuf.peekChars()); } else { assert(fd); bool hasOverloads = fd->overnext != NULL; TypeFunction *tf = fd->type->toTypeFunction(); if (tthis && !MODimplicitConv(tthis->mod, tf->mod)) // modifier mismatch { OutBuffer thisBuf, funcBuf; MODMatchToBuffer(&thisBuf, tthis->mod, tf->mod); MODMatchToBuffer(&funcBuf, tf->mod, tthis->mod); if (hasOverloads) ::error(loc, "none of the overloads of `%s` are callable using a %sobject, candidates are:", fd->ident->toChars(), thisBuf.peekChars()); else ::error(loc, "%smethod `%s` is not callable using a %sobject", funcBuf.peekChars(), fd->toPrettyChars(), thisBuf.peekChars()); } else { //printf("tf = %s, args = %s\n", tf->deco, (*fargs)[0]->type->deco); if (hasOverloads) ::error(loc, "none of the overloads of `%s` are callable using argument types `%s`, candidates are:", fd->ident->toChars(), fargsBuf.peekChars()); else { fd->error(loc, "%s `%s%s%s` is not callable using argument types `%s`", fd->kind(), fd->toPrettyChars(), parametersTypeToChars(tf->parameterList), tf->modToChars(), fargsBuf.peekChars()); if (failMessage) errorSupplemental(loc, failMessage); } } // Display candidate functions if (hasOverloads) { FuncCandidateWalker fcw; fcw.loc = loc; fcw.numToDisplay = numOverloadsDisplay; overloadApply(fd, &fcw, &FuncCandidateWalker::fp); } } } else if (m.nextf) { TypeFunction *tf1 = m.lastf->type->toTypeFunction(); TypeFunction *tf2 = m.nextf->type->toTypeFunction(); const char *lastprms = parametersTypeToChars(tf1->parameterList); const char *nextprms = parametersTypeToChars(tf2->parameterList); ::error(loc, "%s.%s called with argument types %s matches both:\n" "%s: %s%s\nand:\n%s: %s%s", s->parent->toPrettyChars(), s->ident->toChars(), fargsBuf.peekChars(), m.lastf->loc.toChars(), m.lastf->toPrettyChars(), lastprms, m.nextf->loc.toChars(), m.nextf->toPrettyChars(), nextprms); } return NULL; } /******************************** * Labels are in a separate scope, one per function. */ LabelDsymbol *FuncDeclaration::searchLabel(Identifier *ident) { Dsymbol *s; if (!labtab) labtab = new DsymbolTable(); // guess we need one s = labtab->lookup(ident); if (!s) { s = new LabelDsymbol(ident); labtab->insert(s); } return (LabelDsymbol *)s; } /***************************************** * Determine lexical level difference from 'this' to nested function 'fd'. * Error if this cannot call fd. * Returns: * 0 same level * >0 decrease nesting by number * -1 increase nesting by 1 (fd is nested within 'this') * -2 error */ int FuncDeclaration::getLevel(Loc loc, Scope *sc, FuncDeclaration *fd) { int level; Dsymbol *s; Dsymbol *fdparent; //printf("FuncDeclaration::getLevel(fd = '%s')\n", fd->toChars()); fdparent = fd->toParent2(); if (fdparent == this) return -1; s = this; level = 0; while (fd != s && fdparent != s->toParent2()) { //printf("\ts = %s, '%s'\n", s->kind(), s->toChars()); FuncDeclaration *thisfd = s->isFuncDeclaration(); if (thisfd) { if (!thisfd->isNested() && !thisfd->vthis && !sc->intypeof) goto Lerr; } else { AggregateDeclaration *thiscd = s->isAggregateDeclaration(); if (thiscd) { /* AggregateDeclaration::isNested returns true only when * it has a hidden pointer. * But, calling the function belongs unrelated lexical scope * is still allowed inside typeof. * * struct Map(alias fun) { * typeof({ return fun(); }) RetType; * // No member function makes Map struct 'not nested'. * } */ if (!thiscd->isNested() && !sc->intypeof) goto Lerr; } else goto Lerr; } s = s->toParent2(); assert(s); level++; } return level; Lerr: // Don't give error if in template constraint if (!(sc->flags & SCOPEconstraint)) { const char *xstatic = isStatic() ? "static " : ""; // better diagnostics for static functions ::error(loc, "%s%s %s cannot access frame of function %s", xstatic, kind(), toPrettyChars(), fd->toPrettyChars()); return -2; } return 1; } const char *FuncDeclaration::toPrettyChars(bool QualifyTypes) { if (isMain()) return "D main"; else return Dsymbol::toPrettyChars(QualifyTypes); } /** for diagnostics, e.g. 'int foo(int x, int y) pure' */ const char *FuncDeclaration::toFullSignature() { OutBuffer buf; functionToBufferWithIdent(type->toTypeFunction(), &buf, toChars()); return buf.extractChars(); } bool FuncDeclaration::isMain() { return ident == Id::main && linkage != LINKc && !isMember() && !isNested(); } bool FuncDeclaration::isCMain() { return ident == Id::main && linkage == LINKc && !isMember() && !isNested(); } bool FuncDeclaration::isWinMain() { //printf("FuncDeclaration::isWinMain() %s\n", toChars()); return ident == Id::WinMain && linkage != LINKc && !isMember(); } bool FuncDeclaration::isDllMain() { return ident == Id::DllMain && linkage != LINKc && !isMember(); } bool FuncDeclaration::isExport() const { return protection.kind == Prot::export_; } bool FuncDeclaration::isImportedSymbol() const { //printf("isImportedSymbol()\n"); //printf("protection = %d\n", protection); return (protection.kind == Prot::export_) && !fbody; } // Determine if function goes into virtual function pointer table bool FuncDeclaration::isVirtual() { if (toAliasFunc() != this) return toAliasFunc()->isVirtual(); Dsymbol *p = toParent(); return isMember() && !(isStatic() || protection.kind == Prot::private_ || protection.kind == Prot::package_) && p->isClassDeclaration() && !(p->isInterfaceDeclaration() && isFinalFunc()); } // Determine if a function is pedantically virtual bool FuncDeclaration::isVirtualMethod() { if (toAliasFunc() != this) return toAliasFunc()->isVirtualMethod(); //printf("FuncDeclaration::isVirtualMethod() %s\n", toChars()); if (!isVirtual()) return false; // If it's a final method, and does not override anything, then it is not virtual if (isFinalFunc() && foverrides.length == 0) { return false; } return true; } bool FuncDeclaration::isFinalFunc() { if (toAliasFunc() != this) return toAliasFunc()->isFinalFunc(); ClassDeclaration *cd; return isMember() && (Declaration::isFinal() || ((cd = toParent()->isClassDeclaration()) != NULL && cd->storage_class & STCfinal)); } bool FuncDeclaration::isCodeseg() const { return true; // functions are always in the code segment } bool FuncDeclaration::isOverloadable() { return true; // functions can be overloaded } PURE FuncDeclaration::isPure() { //printf("FuncDeclaration::isPure() '%s'\n", toChars()); TypeFunction *tf = type->toTypeFunction(); if (flags & FUNCFLAGpurityInprocess) setImpure(); if (tf->purity == PUREfwdref) tf->purityLevel(); PURE purity = tf->purity; if (purity > PUREweak && isNested()) purity = PUREweak; if (purity > PUREweak && needThis()) { // The attribute of the 'this' reference affects purity strength if (type->mod & MODimmutable) ; else if (type->mod & (MODconst | MODwild) && purity >= PUREconst) purity = PUREconst; else purity = PUREweak; } tf->purity = purity; // ^ This rely on the current situation that every FuncDeclaration has a // unique TypeFunction. return purity; } PURE FuncDeclaration::isPureBypassingInference() { if (flags & FUNCFLAGpurityInprocess) return PUREfwdref; else return isPure(); } /************************************** * The function is doing something impure, * so mark it as impure. * If there's a purity error, return true. */ bool FuncDeclaration::setImpure() { if (flags & FUNCFLAGpurityInprocess) { flags &= ~FUNCFLAGpurityInprocess; if (fes) fes->func->setImpure(); } else if (isPure()) return true; return false; } bool FuncDeclaration::isSafe() { if (flags & FUNCFLAGsafetyInprocess) setUnsafe(); return type->toTypeFunction()->trust == TRUSTsafe; } bool FuncDeclaration::isSafeBypassingInference() { return !(flags & FUNCFLAGsafetyInprocess) && isSafe(); } bool FuncDeclaration::isTrusted() { if (flags & FUNCFLAGsafetyInprocess) setUnsafe(); return type->toTypeFunction()->trust == TRUSTtrusted; } /************************************** * The function is doing something unsave, * so mark it as unsafe. * If there's a safe error, return true. */ bool FuncDeclaration::setUnsafe() { if (flags & FUNCFLAGsafetyInprocess) { flags &= ~FUNCFLAGsafetyInprocess; type->toTypeFunction()->trust = TRUSTsystem; if (fes) fes->func->setUnsafe(); } else if (isSafe()) return true; return false; } bool FuncDeclaration::isNogc() { if (flags & FUNCFLAGnogcInprocess) setGC(); return type->toTypeFunction()->isnogc; } bool FuncDeclaration::isNogcBypassingInference() { return !(flags & FUNCFLAGnogcInprocess) && isNogc(); } /************************************** * The function is doing something that may allocate with the GC, * so mark it as not nogc (not no-how). * Returns: * true if function is marked as @nogc, meaning a user error occurred */ bool FuncDeclaration::setGC() { if (flags & FUNCFLAGnogcInprocess) { flags &= ~FUNCFLAGnogcInprocess; type->toTypeFunction()->isnogc = false; if (fes) fes->func->setGC(); } else if (isNogc()) return true; return false; } /************************************** * Returns an indirect type one step from t. */ Type *getIndirection(Type *t) { t = t->baseElemOf(); if (t->ty == Tarray || t->ty == Tpointer) return t->nextOf()->toBasetype(); if (t->ty == Taarray || t->ty == Tclass) return t; if (t->ty == Tstruct) return t->hasPointers() ? t : NULL; // TODO // should consider TypeDelegate? return NULL; } /************************************** * Returns true if memory reachable through a reference B to a value of type tb, * which has been constructed with a reference A to a value of type ta * available, can alias memory reachable from A based on the types involved * (either directly or via any number of indirections). * * Note that this relation is not symmetric in the two arguments. For example, * a const(int) reference can point to a pre-existing int, but not the other * way round. */ bool traverseIndirections(Type *ta, Type *tb, void *p = NULL, bool reversePass = false) { Type *source = ta; Type *target = tb; if (reversePass) { source = tb; target = ta; } if (source->constConv(target)) return true; else if (target->ty == Tvoid && MODimplicitConv(source->mod, target->mod)) return true; // No direct match, so try breaking up one of the types (starting with tb). Type *tbb = tb->toBasetype()->baseElemOf(); if (tbb != tb) return traverseIndirections(ta, tbb, p, reversePass); // context date to detect circular look up struct Ctxt { Ctxt *prev; Type *type; }; Ctxt *ctxt = (Ctxt *)p; if (tb->ty == Tclass || tb->ty == Tstruct) { for (Ctxt *c = ctxt; c; c = c->prev) if (tb == c->type) return false; Ctxt c; c.prev = ctxt; c.type = tb; AggregateDeclaration *sym = tb->toDsymbol(NULL)->isAggregateDeclaration(); for (size_t i = 0; i < sym->fields.length; i++) { VarDeclaration *v = sym->fields[i]; Type *tprmi = v->type->addMod(tb->mod); //printf("\ttb = %s, tprmi = %s\n", tb->toChars(), tprmi->toChars()); if (traverseIndirections(ta, tprmi, &c, reversePass)) return true; } } else if (tb->ty == Tarray || tb->ty == Taarray || tb->ty == Tpointer) { Type *tind = tb->nextOf(); if (traverseIndirections(ta, tind, ctxt, reversePass)) return true; } else if (tb->hasPointers()) { // FIXME: function pointer/delegate types should be considered. return true; } // Still no match, so try breaking up ta if we have note done so yet. if (!reversePass) return traverseIndirections(tb, ta, ctxt, true); return false; } /******************************************** * Returns true if the function return value has no indirection * which comes from the parameters. */ bool FuncDeclaration::isolateReturn() { TypeFunction *tf = type->toTypeFunction(); assert(tf->next); Type *treti = tf->next; treti = tf->isref ? treti : getIndirection(treti); if (!treti) return true; // target has no mutable indirection return parametersIntersect(treti); } /******************************************** * Returns true if an object typed t can have indirections * which come from the parameters. */ bool FuncDeclaration::parametersIntersect(Type *t) { assert(t); if (!isPureBypassingInference() || isNested()) return false; TypeFunction *tf = type->toTypeFunction(); //printf("parametersIntersect(%s) t = %s\n", tf->toChars(), t->toChars()); size_t dim = tf->parameterList.length(); for (size_t i = 0; i < dim; i++) { Parameter *fparam = tf->parameterList[i]; if (!fparam->type) continue; Type *tprmi = (fparam->storageClass & (STClazy | STCout | STCref)) ? fparam->type : getIndirection(fparam->type); if (!tprmi) continue; // there is no mutable indirection //printf("\t[%d] tprmi = %d %s\n", i, tprmi->ty, tprmi->toChars()); if (traverseIndirections(tprmi, t)) return false; } if (AggregateDeclaration *ad = isCtorDeclaration() ? NULL : isThis()) { Type *tthis = ad->getType()->addMod(tf->mod); //printf("\ttthis = %s\n", tthis->toChars()); if (traverseIndirections(tthis, t)) return false; } return true; } /**************************************** * Determine if function needs a static frame pointer. * Returns: * `true` if function is really nested within other function. * Contracts: * If isNested() returns true, isThis() should return false. */ bool FuncDeclaration::isNested() { FuncDeclaration *f = toAliasFunc(); //printf("\ttoParent2() = '%s'\n", f->toParent2()->toChars()); return ((f->storage_class & STCstatic) == 0) && (f->linkage == LINKd) && (f->toParent2()->isFuncDeclaration() != NULL); } /**************************************** * Determine if function is a non-static member function * that has an implicit 'this' expression. * Returns: * The aggregate it is a member of, or null. * Contracts: * If isThis() returns true, isNested() should return false. */ AggregateDeclaration *FuncDeclaration::isThis() { //printf("+FuncDeclaration::isThis() '%s'\n", toChars()); AggregateDeclaration *ad = (storage_class & STCstatic) ? NULL : isMember2(); //printf("-FuncDeclaration::isThis() %p\n", ad); return ad; } bool FuncDeclaration::needThis() { //printf("FuncDeclaration::needThis() '%s'\n", toChars()); return toAliasFunc()->isThis() != NULL; } bool FuncDeclaration::addPreInvariant() { AggregateDeclaration *ad = isThis(); ClassDeclaration *cd = ad ? ad->isClassDeclaration() : NULL; return (ad && !(cd && cd->isCPPclass()) && global.params.useInvariants == CHECKENABLEon && (protection.kind == Prot::protected_ || protection.kind == Prot::public_ || protection.kind == Prot::export_) && !naked); } bool FuncDeclaration::addPostInvariant() { AggregateDeclaration *ad = isThis(); ClassDeclaration *cd = ad ? ad->isClassDeclaration() : NULL; return (ad && !(cd && cd->isCPPclass()) && ad->inv && global.params.useInvariants == CHECKENABLEon && (protection.kind == Prot::protected_ || protection.kind == Prot::public_ || protection.kind == Prot::export_) && !naked); } /********************************** * Generate a FuncDeclaration for a runtime library function. */ FuncDeclaration *FuncDeclaration::genCfunc(Parameters *fparams, Type *treturn, const char *name, StorageClass stc) { return genCfunc(fparams, treturn, Identifier::idPool(name), stc); } FuncDeclaration *FuncDeclaration::genCfunc(Parameters *fparams, Type *treturn, Identifier *id, StorageClass stc) { FuncDeclaration *fd; TypeFunction *tf; Dsymbol *s; static DsymbolTable *st = NULL; //printf("genCfunc(name = '%s')\n", id->toChars()); //printf("treturn\n\t"); treturn->print(); // See if already in table if (!st) st = new DsymbolTable(); s = st->lookup(id); if (s) { fd = s->isFuncDeclaration(); assert(fd); assert(fd->type->nextOf()->equals(treturn)); } else { tf = new TypeFunction(ParameterList(fparams), treturn, LINKc, stc); fd = new FuncDeclaration(Loc(), Loc(), id, STCstatic, tf); fd->protection = Prot(Prot::public_); fd->linkage = LINKc; st->insert(fd); } return fd; } /****************** * Check parameters and return type of D main() function. * Issue error messages. */ void FuncDeclaration::checkDmain() { TypeFunction *tf = type->toTypeFunction(); const size_t nparams = tf->parameterList.length(); bool argerr = false; if (nparams == 1) { Parameter *fparam0 = tf->parameterList[0]; Type *t = fparam0->type->toBasetype(); if (t->ty != Tarray || t->nextOf()->ty != Tarray || t->nextOf()->nextOf()->ty != Tchar || fparam0->storageClass & (STCout | STCref | STClazy)) { argerr = true; } } if (!tf->nextOf()) error("must return int or void"); else if (tf->nextOf()->ty != Tint32 && tf->nextOf()->ty != Tvoid) error("must return int or void, not %s", tf->nextOf()->toChars()); else if (tf->parameterList.varargs || nparams >= 2 || argerr) error("parameters must be main() or main(string[] args)"); } /*********************************************** * Check all return statements for a function to verify that returning * using NRVO is possible. * * Returns: * `false` if the result cannot be returned by hidden reference. */ bool FuncDeclaration::checkNRVO() { if (!nrvo_can || returns == NULL) return false; TypeFunction *tf = type->toTypeFunction(); if (tf->isref) return false; for (size_t i = 0; i < returns->length; i++) { ReturnStatement *rs = (*returns)[i]; if (VarExp *ve = rs->exp->isVarExp()) { VarDeclaration *v = ve->var->isVarDeclaration(); if (!v || v->isOut() || v->isRef()) return false; else if (nrvo_var == NULL) { // Variables in the data segment (e.g. globals, TLS or not), // parameters and closure variables cannot be NRVOed. if (v->isDataseg() || v->isParameter() || v->toParent2() != this) return false; //printf("Setting nrvo to %s\n", v->toChars()); nrvo_var = v; } else if (nrvo_var != v) return false; } else //if (!exp->isLvalue()) // keep NRVO-ability return false; } return true; } const char *FuncDeclaration::kind() const { return generated ? "generated function" : "function"; } /********************************************* * In the current function, we are calling 'this' function. * 1. Check to see if the current function can call 'this' function, issue error if not. * 2. If the current function is not the parent of 'this' function, then add * the current function to the list of siblings of 'this' function. * 3. If the current function is a literal, and it's accessing an uplevel scope, * then mark it as a delegate. * Returns true if error occurs. */ bool FuncDeclaration::checkNestedReference(Scope *sc, Loc loc) { //printf("FuncDeclaration::checkNestedReference() %s\n", toPrettyChars()); if (FuncLiteralDeclaration *fld = this->isFuncLiteralDeclaration()) { if (fld->tok == TOKreserved) { fld->tok = TOKfunction; fld->vthis = NULL; } } if (!parent || parent == sc->parent) return false; if (ident == Id::require || ident == Id::ensure) return false; if (!isThis() && !isNested()) return false; // The current function FuncDeclaration *fdthis = sc->parent->isFuncDeclaration(); if (!fdthis) return false; // out of function scope Dsymbol *p = toParent2(); // Function literals from fdthis to p must be delegates checkNestedRef(fdthis, p); if (isNested()) { // The function that this function is in FuncDeclaration *fdv = p->isFuncDeclaration(); if (!fdv) return false; if (fdv == fdthis) return false; //printf("this = %s in [%s]\n", this->toChars(), this->loc.toChars()); //printf("fdv = %s in [%s]\n", fdv->toChars(), fdv->loc.toChars()); //printf("fdthis = %s in [%s]\n", fdthis->toChars(), fdthis->loc.toChars()); // Add this function to the list of those which called us if (fdthis != this) { bool found = false; for (size_t i = 0; i < siblingCallers.length; ++i) { if (siblingCallers[i] == fdthis) found = true; } if (!found) { //printf("\tadding sibling %s\n", fdthis->toPrettyChars()); if (!sc->intypeof && !(sc->flags & SCOPEcompile)) siblingCallers.push(fdthis); } } int lv = fdthis->getLevel(loc, sc, fdv); if (lv == -2) return true; // error if (lv == -1) return false; // downlevel call if (lv == 0) return false; // same level call // Uplevel call } return false; } /* For all functions between outerFunc and f, mark them as needing * a closure. */ void markAsNeedingClosure(Dsymbol *f, FuncDeclaration *outerFunc) { for (Dsymbol *sx = f; sx && sx != outerFunc; sx = sx->parent) { FuncDeclaration *fy = sx->isFuncDeclaration(); if (fy && fy->closureVars.length) { /* fy needs a closure if it has closureVars[], * because the frame pointer in the closure will be accessed. */ fy->requiresClosure = true; } } } /* Given a nested function f inside a function outerFunc, check * if any sibling callers of f have escaped. If so, mark * all the enclosing functions as needing closures. * Return true if any closures were detected. * This is recursive: we need to check the callers of our siblings. * Note that nested functions can only call lexically earlier nested * functions, so loops are impossible. */ bool checkEscapingSiblings(FuncDeclaration *f, FuncDeclaration *outerFunc, void *p = NULL) { struct PrevSibling { PrevSibling *p; FuncDeclaration *f; }; PrevSibling ps; ps.p = (PrevSibling *)p; ps.f = f; //printf("checkEscapingSiblings(f = %s, outerfunc = %s)\n", f->toChars(), outerFunc->toChars()); bool bAnyClosures = false; for (size_t i = 0; i < f->siblingCallers.length; ++i) { FuncDeclaration *g = f->siblingCallers[i]; if (g->isThis() || g->tookAddressOf) { markAsNeedingClosure(g, outerFunc); bAnyClosures = true; } PrevSibling *prev = (PrevSibling *)p; while (1) { if (!prev) { bAnyClosures |= checkEscapingSiblings(g, outerFunc, &ps); break; } if (prev->f == g) break; prev = prev->p; } } //printf("\t%d\n", bAnyClosures); return bAnyClosures; } /******************************* * Look at all the variables in this function that are referenced * by nested functions, and determine if a closure needs to be * created for them. */ bool FuncDeclaration::needsClosure() { /* Need a closure for all the closureVars[] if any of the * closureVars[] are accessed by a * function that escapes the scope of this function. * We take the conservative approach and decide that a function needs * a closure if it: * 1) is a virtual function * 2) has its address taken * 3) has a parent that escapes * 4) calls another nested function that needs a closure * * Note that since a non-virtual function can be called by * a virtual one, if that non-virtual function accesses a closure * var, the closure still has to be taken. Hence, we check for isThis() * instead of isVirtual(). (thanks to David Friedman) * * When the function returns a local struct or class, `requiresClosure` * is already set to `true` upon entering this function when the * struct/class refers to a local variable and a closure is needed. */ //printf("FuncDeclaration::needsClosure() %s\n", toChars()); if (requiresClosure) goto Lyes; for (size_t i = 0; i < closureVars.length; i++) { VarDeclaration *v = closureVars[i]; //printf("\tv = %s\n", v->toChars()); for (size_t j = 0; j < v->nestedrefs.length; j++) { FuncDeclaration *f = v->nestedrefs[j]; assert(f != this); //printf("\t\tf = %s, isVirtual=%d, isThis=%p, tookAddressOf=%d\n", f->toChars(), f->isVirtual(), f->isThis(), f->tookAddressOf); /* Look to see if f escapes. We consider all parents of f within * this, and also all siblings which call f; if any of them escape, * so does f. * Mark all affected functions as requiring closures. */ for (Dsymbol *s = f; s && s != this; s = s->parent) { FuncDeclaration *fx = s->isFuncDeclaration(); if (!fx) continue; if (fx->isThis() || fx->tookAddressOf) { //printf("\t\tfx = %s, isVirtual=%d, isThis=%p, tookAddressOf=%d\n", fx->toChars(), fx->isVirtual(), fx->isThis(), fx->tookAddressOf); /* Mark as needing closure any functions between this and f */ markAsNeedingClosure( (fx == f) ? fx->parent : fx, this); requiresClosure = true; } /* We also need to check if any sibling functions that * called us, have escaped. This is recursive: we need * to check the callers of our siblings. */ if (checkEscapingSiblings(fx, this)) requiresClosure = true; /* Bugzilla 12406: Iterate all closureVars to mark all descendant * nested functions that access to the closing context of this funciton. */ } } } if (requiresClosure) goto Lyes; return false; Lyes: //printf("\tneeds closure\n"); return true; } /*********************************************** * Check that the function contains any closure. * If it's @nogc, report suitable errors. * This is mostly consistent with FuncDeclaration::needsClosure(). * * Returns: * true if any errors occur. */ bool FuncDeclaration::checkClosure() { if (!needsClosure()) return false; if (setGC()) { error("is @nogc yet allocates closures with the GC"); if (global.gag) // need not report supplemental errors return true; } else { printGCUsage(loc, "using closure causes GC allocation"); return false; } FuncDeclarations a; for (size_t i = 0; i < closureVars.length; i++) { VarDeclaration *v = closureVars[i]; for (size_t j = 0; j < v->nestedrefs.length; j++) { FuncDeclaration *f = v->nestedrefs[j]; assert(f != this); for (Dsymbol *s = f; s && s != this; s = s->parent) { FuncDeclaration *fx = s->isFuncDeclaration(); if (!fx) continue; if (fx->isThis() || fx->tookAddressOf) goto Lfound; if (checkEscapingSiblings(fx, this)) goto Lfound; } continue; Lfound: for (size_t k = 0; ; k++) { if (k == a.length) { a.push(f); ::errorSupplemental(f->loc, "%s closes over variable %s at %s", f->toPrettyChars(), v->toChars(), v->loc.toChars()); break; } if (a[k] == f) break; } continue; } } return true; } /*********************************************** * Determine if function's variables are referenced by a function * nested within it. */ bool FuncDeclaration::hasNestedFrameRefs() { if (closureVars.length) return true; /* If a virtual function has contracts, assume its variables are referenced * by those contracts, even if they aren't. Because they might be referenced * by the overridden or overriding function's contracts. * This can happen because frequire and fensure are implemented as nested functions, * and they can be called directly by an overriding function and the overriding function's * context had better match, or Bugzilla 7335 will bite. */ if (fdrequire || fdensure) return true; if (foverrides.length && isVirtualMethod()) { for (size_t i = 0; i < foverrides.length; i++) { FuncDeclaration *fdv = foverrides[i]; if (fdv->hasNestedFrameRefs()) return true; } } return false; } /********************************************* * Return the function's parameter list, and whether * it is variadic or not. */ ParameterList FuncDeclaration::getParameterList() { if (type) { TypeFunction *fdtype = type->toTypeFunction(); return fdtype->parameterList; } return ParameterList(); } /****************************** FuncAliasDeclaration ************************/ // Used as a way to import a set of functions from another scope into this one. FuncAliasDeclaration::FuncAliasDeclaration(Identifier *ident, FuncDeclaration *funcalias, bool hasOverloads) : FuncDeclaration(funcalias->loc, funcalias->endloc, ident, funcalias->storage_class, funcalias->type) { assert(funcalias != this); this->funcalias = funcalias; this->hasOverloads = hasOverloads; if (hasOverloads) { if (FuncAliasDeclaration *fad = funcalias->isFuncAliasDeclaration()) this->hasOverloads = fad->hasOverloads; } else { // for internal use assert(!funcalias->isFuncAliasDeclaration()); this->hasOverloads = false; } userAttribDecl = funcalias->userAttribDecl; } const char *FuncAliasDeclaration::kind() const { return "function alias"; } FuncDeclaration *FuncAliasDeclaration::toAliasFunc() { return funcalias->toAliasFunc(); } /****************************** FuncLiteralDeclaration ************************/ FuncLiteralDeclaration::FuncLiteralDeclaration(Loc loc, Loc endloc, Type *type, TOK tok, ForeachStatement *fes, Identifier *id) : FuncDeclaration(loc, endloc, NULL, STCundefined, type) { this->ident = id ? id : Id::empty; this->tok = tok; this->fes = fes; this->treq = NULL; this->deferToObj = false; //printf("FuncLiteralDeclaration() id = '%s', type = '%s'\n", this->ident->toChars(), type->toChars()); } Dsymbol *FuncLiteralDeclaration::syntaxCopy(Dsymbol *s) { //printf("FuncLiteralDeclaration::syntaxCopy('%s')\n", toChars()); assert(!s); FuncLiteralDeclaration *f = new FuncLiteralDeclaration(loc, endloc, type->syntaxCopy(), tok, fes, ident); f->treq = treq; // don't need to copy return FuncDeclaration::syntaxCopy(f); } bool FuncLiteralDeclaration::isNested() { //printf("FuncLiteralDeclaration::isNested() '%s'\n", toChars()); return (tok != TOKfunction) && !isThis(); } AggregateDeclaration *FuncLiteralDeclaration::isThis() { //printf("FuncLiteralDeclaration::isThis() '%s'\n", toChars()); return tok == TOKdelegate ? FuncDeclaration::isThis() : NULL; } bool FuncLiteralDeclaration::isVirtual() { return false; } bool FuncLiteralDeclaration::addPreInvariant() { return false; } bool FuncLiteralDeclaration::addPostInvariant() { return false; } /******************************* * Modify all expression type of return statements to tret. * * On function literals, return type may be modified based on the context type * after its semantic3 is done, in FuncExp::implicitCastTo. * * A function() dg = (){ return new B(); } // OK if is(B : A) == true * * If B to A conversion is convariant that requires offseet adjusting, * all return statements should be adjusted to return expressions typed A. */ void FuncLiteralDeclaration::modifyReturns(Scope *sc, Type *tret) { class RetWalker : public StatementRewriteWalker { public: Scope *sc; Type *tret; FuncLiteralDeclaration *fld; void visit(ReturnStatement *s) { Expression *exp = s->exp; if (exp && !exp->type->equals(tret)) { s->exp = exp->castTo(sc, tret); } } }; if (semanticRun < PASSsemantic3done) return; if (fes) return; RetWalker w; w.sc = sc; w.tret = tret; w.fld = this; fbody->accept(&w); // Also update the inferred function type to match the new return type. // This is required so the code generator does not try to cast the // modified returns back to the original type. if (inferRetType && type->nextOf() != tret) type->toTypeFunction()->next = tret; } const char *FuncLiteralDeclaration::kind() const { return (tok != TOKfunction) ? "delegate" : "function"; } const char *FuncLiteralDeclaration::toPrettyChars(bool QualifyTypes) { if (parent) { TemplateInstance *ti = parent->isTemplateInstance(); if (ti) return ti->tempdecl->toPrettyChars(QualifyTypes); } return Dsymbol::toPrettyChars(QualifyTypes); } /********************************* CtorDeclaration ****************************/ CtorDeclaration::CtorDeclaration(Loc loc, Loc endloc, StorageClass stc, Type *type) : FuncDeclaration(loc, endloc, Id::ctor, stc, type) { //printf("CtorDeclaration(loc = %s) %s\n", loc.toChars(), toChars()); } Dsymbol *CtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); CtorDeclaration *f = new CtorDeclaration(loc, endloc, storage_class, type->syntaxCopy()); return FuncDeclaration::syntaxCopy(f); } const char *CtorDeclaration::kind() const { return "constructor"; } const char *CtorDeclaration::toChars() { return "this"; } bool CtorDeclaration::isVirtual() { return false; } bool CtorDeclaration::addPreInvariant() { return false; } bool CtorDeclaration::addPostInvariant() { return (isThis() && vthis && global.params.useInvariants == CHECKENABLEon); } /********************************* PostBlitDeclaration ****************************/ PostBlitDeclaration::PostBlitDeclaration(Loc loc, Loc endloc, StorageClass stc, Identifier *id) : FuncDeclaration(loc, endloc, id, stc, NULL) { } Dsymbol *PostBlitDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); PostBlitDeclaration *dd = new PostBlitDeclaration(loc, endloc, storage_class, ident); return FuncDeclaration::syntaxCopy(dd); } bool PostBlitDeclaration::overloadInsert(Dsymbol *) { return false; // cannot overload postblits } bool PostBlitDeclaration::addPreInvariant() { return false; } bool PostBlitDeclaration::addPostInvariant() { return (isThis() && vthis && global.params.useInvariants == CHECKENABLEon); } bool PostBlitDeclaration::isVirtual() { return false; } /********************************* DtorDeclaration ****************************/ DtorDeclaration::DtorDeclaration(Loc loc, Loc endloc) : FuncDeclaration(loc, endloc, Id::dtor, STCundefined, NULL) { } DtorDeclaration::DtorDeclaration(Loc loc, Loc endloc, StorageClass stc, Identifier *id) : FuncDeclaration(loc, endloc, id, stc, NULL) { } Dsymbol *DtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); DtorDeclaration *dd = new DtorDeclaration(loc, endloc, storage_class, ident); return FuncDeclaration::syntaxCopy(dd); } bool DtorDeclaration::overloadInsert(Dsymbol *) { return false; // cannot overload destructors } bool DtorDeclaration::addPreInvariant() { return (isThis() && vthis && global.params.useInvariants == CHECKENABLEon); } bool DtorDeclaration::addPostInvariant() { return false; } const char *DtorDeclaration::kind() const { return "destructor"; } const char *DtorDeclaration::toChars() { return "~this"; } bool DtorDeclaration::isVirtual() { // false so that dtor's don't get put into the vtbl[] return false; } /********************************* StaticCtorDeclaration ****************************/ StaticCtorDeclaration::StaticCtorDeclaration(Loc loc, Loc endloc, StorageClass stc) : FuncDeclaration(loc, endloc, Identifier::generateId("_staticCtor"), STCstatic | stc, NULL) { } StaticCtorDeclaration::StaticCtorDeclaration(Loc loc, Loc endloc, const char *name, StorageClass stc) : FuncDeclaration(loc, endloc, Identifier::generateId(name), STCstatic | stc, NULL) { } Dsymbol *StaticCtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); StaticCtorDeclaration *scd = new StaticCtorDeclaration(loc, endloc, storage_class); return FuncDeclaration::syntaxCopy(scd); } AggregateDeclaration *StaticCtorDeclaration::isThis() { return NULL; } bool StaticCtorDeclaration::isVirtual() { return false; } bool StaticCtorDeclaration::hasStaticCtorOrDtor() { return true; } bool StaticCtorDeclaration::addPreInvariant() { return false; } bool StaticCtorDeclaration::addPostInvariant() { return false; } /********************************* SharedStaticCtorDeclaration ****************************/ SharedStaticCtorDeclaration::SharedStaticCtorDeclaration(Loc loc, Loc endloc, StorageClass stc) : StaticCtorDeclaration(loc, endloc, "_sharedStaticCtor", stc) { } Dsymbol *SharedStaticCtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); SharedStaticCtorDeclaration *scd = new SharedStaticCtorDeclaration(loc, endloc, storage_class); return FuncDeclaration::syntaxCopy(scd); } /********************************* StaticDtorDeclaration ****************************/ StaticDtorDeclaration::StaticDtorDeclaration(Loc loc, Loc endloc, StorageClass stc) : FuncDeclaration(loc, endloc, Identifier::generateId("_staticDtor"), STCstatic | stc, NULL) { vgate = NULL; } StaticDtorDeclaration::StaticDtorDeclaration(Loc loc, Loc endloc, const char *name, StorageClass stc) : FuncDeclaration(loc, endloc, Identifier::generateId(name), STCstatic | stc, NULL) { vgate = NULL; } Dsymbol *StaticDtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); StaticDtorDeclaration *sdd = new StaticDtorDeclaration(loc, endloc, storage_class); return FuncDeclaration::syntaxCopy(sdd); } AggregateDeclaration *StaticDtorDeclaration::isThis() { return NULL; } bool StaticDtorDeclaration::isVirtual() { return false; } bool StaticDtorDeclaration::hasStaticCtorOrDtor() { return true; } bool StaticDtorDeclaration::addPreInvariant() { return false; } bool StaticDtorDeclaration::addPostInvariant() { return false; } /********************************* SharedStaticDtorDeclaration ****************************/ SharedStaticDtorDeclaration::SharedStaticDtorDeclaration(Loc loc, Loc endloc, StorageClass stc) : StaticDtorDeclaration(loc, endloc, "_sharedStaticDtor", stc) { } Dsymbol *SharedStaticDtorDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); SharedStaticDtorDeclaration *sdd = new SharedStaticDtorDeclaration(loc, endloc, storage_class); return FuncDeclaration::syntaxCopy(sdd); } /********************************* InvariantDeclaration ****************************/ InvariantDeclaration::InvariantDeclaration(Loc loc, Loc endloc, StorageClass stc, Identifier *id) : FuncDeclaration(loc, endloc, id ? id : Identifier::generateId("__invariant"), stc, NULL) { } Dsymbol *InvariantDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); InvariantDeclaration *id = new InvariantDeclaration(loc, endloc, storage_class); return FuncDeclaration::syntaxCopy(id); } bool InvariantDeclaration::isVirtual() { return false; } bool InvariantDeclaration::addPreInvariant() { return false; } bool InvariantDeclaration::addPostInvariant() { return false; } /********************************* UnitTestDeclaration ****************************/ /******************************* * Generate unique unittest function Id so we can have multiple * instances per module. */ static Identifier *unitTestId(Loc loc) { OutBuffer buf; buf.printf("__unittestL%u_", loc.linnum); return Identifier::generateId(buf.peekChars()); } UnitTestDeclaration::UnitTestDeclaration(Loc loc, Loc endloc, StorageClass stc, char *codedoc) : FuncDeclaration(loc, endloc, unitTestId(loc), stc, NULL) { this->codedoc = codedoc; } Dsymbol *UnitTestDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); UnitTestDeclaration *utd = new UnitTestDeclaration(loc, endloc, storage_class, codedoc); return FuncDeclaration::syntaxCopy(utd); } AggregateDeclaration *UnitTestDeclaration::isThis() { return NULL; } bool UnitTestDeclaration::isVirtual() { return false; } bool UnitTestDeclaration::addPreInvariant() { return false; } bool UnitTestDeclaration::addPostInvariant() { return false; } /********************************* NewDeclaration ****************************/ NewDeclaration::NewDeclaration(Loc loc, Loc endloc, StorageClass stc, Parameters *fparams, VarArg varargs) : FuncDeclaration(loc, endloc, Id::classNew, STCstatic | stc, NULL) { this->parameters = fparams; this->varargs = varargs; } Dsymbol *NewDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); NewDeclaration *f = new NewDeclaration(loc, endloc, storage_class, Parameter::arraySyntaxCopy(parameters), varargs); return FuncDeclaration::syntaxCopy(f); } const char *NewDeclaration::kind() const { return "allocator"; } bool NewDeclaration::isVirtual() { return false; } bool NewDeclaration::addPreInvariant() { return false; } bool NewDeclaration::addPostInvariant() { return false; } /********************************* DeleteDeclaration ****************************/ DeleteDeclaration::DeleteDeclaration(Loc loc, Loc endloc, StorageClass stc, Parameters *fparams) : FuncDeclaration(loc, endloc, Id::classDelete, STCstatic | stc, NULL) { this->parameters = fparams; } Dsymbol *DeleteDeclaration::syntaxCopy(Dsymbol *s) { assert(!s); DeleteDeclaration *f = new DeleteDeclaration(loc, endloc, storage_class, Parameter::arraySyntaxCopy(parameters)); return FuncDeclaration::syntaxCopy(f); } const char *DeleteDeclaration::kind() const { return "deallocator"; } bool DeleteDeclaration::isDelete() { return true; } bool DeleteDeclaration::isVirtual() { return false; } bool DeleteDeclaration::addPreInvariant() { return false; } bool DeleteDeclaration::addPostInvariant() { return false; }